• Title/Summary/Keyword: Interface Washer

Search Result 4, Processing Time 0.019 seconds

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

Performance evaluation of EMI interface and multi-channel wireless impedance sensor node for bolted connection monitoring (볼트 연결부 모니터링을 위한 다채널 무선 임피런스 센서노트와 EMI 인터페이스의 성능 분석)

  • Nguyen, Khac-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.36-39
    • /
    • 2011
  • In this paper, performance of EMI interface and multi-channel wireless impedance sensor node is evaluated for SHM on bolted connection. To achieve the objective, following approaches are implemented. Firstly, an interface washer is designed to monitor loosened bolt through the variation in EMI of interface washer due to change in preload in bolt. Secondly, a multi-channel wireless impedance sensor node based on Imote2 platform is designed for automated and cost-efficient impedance-based SHM on bolted connections. Finally, performance of the multi-channel wireless impedance sensor node and the interface washer are experimentally validated for a lab-scale bolted connection model. A damage monitoring method using RMSD index of EMI signatures is utilized to examine the strength of each individual bolted connection.

  • PDF

A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables (구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구)

  • Park, Jae-Hyung;Hong, Dong-Soo;Kim, Jeong-Tae;Na, Won-Bae;Cho, Hyun-Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.21-31
    • /
    • 2010
  • In this study, a technique that uses wireless impedance sensor nodes is proposed to monitor tensile force of structural cable. To achieve this goal, the following approaches were implemented. First, a wireless impedance sensor node was designed for automated and cost-efficient prestress-loss monitoring. Second, an impedance-based algorithm was embedded in the wireless impedance sensor node for autonomous structural health monitoring of structural cables. Third, a tensile force monitoring technique that uses an interface plate for structural cables was proposed to overcome the limitations of the wireless impedance sensor node such as its narrow-band measurable frequency ranges. Finally, the applicability of the wireless impedance sensor node and the technique that uses the interface washer were evaluated in a lab-scaled prestressed concrete (PSC) girder model with internal and external tendons for which several prestress-loss scenarios were experimentally monitored with the wireless impedance sensor nodes.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.