• 제목/요약/키워드: Interface Matrix

검색결과 666건 처리시간 0.033초

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II))

  • 강지웅;권오헌
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석 (Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength)

  • 강충길;서영호
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

Fiber-Matrix Interface Characterization through the Microbond Test

  • Sockalingam, Subramani;Nilakantan, Gaurav
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.282-295
    • /
    • 2012
  • Fiber reinforced polymer matrix composites are widely used to provide protection against ballistic impact and blast events. There are several factors that govern the structural response and mechanical properties of a textile composite structure, of which the fiber-matrix interfacial behavior is a crucial determinant. This paper reviews the microbond or microdroplet test methodology that is used to characterize the fiber-matrix interfacial behavior, particularly the interface shear strength (IFSS). The various analytical, experimental, and numerical approaches applied to the microbond test are reviewed in detail.

강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가 (Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure)

  • 강지웅;김상태;권오헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I))

  • 강지웅;김상태;권오헌
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Boundary element analysis of singular thermal stresses in a unidirectional laminate

  • Lee, Sang Soon;Kim, Beom Shig
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.705-713
    • /
    • 1997
  • The residual thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down to room temperature were studied. The matrix material was assumed to be thermorheologically simple. The time-domain boundary element method was employed to investigate the nature of stresses on the interface. Numerical results show that very large stress gradients are present at the interface corner and this stress singularity might lead to local yielding or fiber-matrix debonding.

기업포탈사이트 업무화면 설계 프로세스 방법론 - 보험사의 프로젝트 진행 사례를 중심으로 (Process Methology of Designing User Interface in Enterprise Portal)

  • 권숙경
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 2부
    • /
    • pp.310-316
    • /
    • 2008
  • 국내외 기업들이 기업포탈(Enterprise Portal)에 대한 관심이 높아지연서 사용자 인터페이스(User Interface)에 대한 중요성이 인식되고 있다. 본 논문에서는 기업포탈(Enterprise Portal)에 대하여 살펴보고, 현행시스템에 대한 사용자의 개선요구사항을 조사, 분석하였다. 사용자 분석결과와 Checklist 평가를 통하여 UI Checklist Matrix 를 작성하였다. Matrix 의 가로축은 사용자 요구분석결과인 Layout, Navigation, Information, Function, Visibility, Interaction 6 가지 항목으로 구성된다. 세로축은 학습성, 효율성, 정확성, 접근성, 일관성, 즉시성, 통합성, 개인화, 기술, 표준화 10 가지 항목이 있다. 가로와 세로 항목이 만나는 곳에 중요도를 표시하고 세부항목을 정의한다. Matrix 가 반영된 가이드라인을 작성하고 가이드라인에 따라 업무화면을 설계하고 Matrix 로 평가한다. 본 연구는 보험사의 차세대 시스템 구축 프로젝트에서 진행된 내용으로 1 년여 기간 동안 업무담당자들과 업무정의에서부터 긴밀한 협조 하에 진행되었다.

  • PDF

Interface Matrix Method in AFEN Framework

  • Leonid Pogosbekyan;Cho, Jin-Young;Kim, Young-Jin;Noh, Jae-Man;Joo, Hyung-Kook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.19-24
    • /
    • 1997
  • In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN fomular. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006%Δk of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method.

  • PDF

형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향 (Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites)

  • 김희연;김경섭;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF