• Title/Summary/Keyword: Interface Bonded Specimen

Search Result 52, Processing Time 0.018 seconds

AN EXPERIMENTAL STUDY OF THE EFFECTS OF ION BEAM HIKING ON CERAMO-METAL BONDING (이온선 혼합법이 도재와 금속의 결합에 미치는 영향에 관한 실험적 연구)

  • Hong, Joon-Pow;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.245-265
    • /
    • 1991
  • The purpose of this study was to observe the changes of the elemental transmission and bond strength between the metal and porcelain according to various kinds of ion beam mixing method. ion beam mixing of $meta1/SiO_2$ (silica), $meta1/Al_2O_3$(alumina) interfaces causes reactions when the $Ar^+$ was implanted into bilayer thin films using a 100KeV accelerator which was designed and constructed for this study. A vacuum evaporator used in the $10^{-5}-10^{-6}$ Torr vacuum states for the evaporation. For this study, three kinds of porcelain metal selected, -precious, semiprecious, and non-precious. Silica and alumina were deposited to the metal by the vacuum evaporator, separately. One group was treated by two kinds of dose of the ion beam mixing $(1\times10^{16}ions/cm^2,\;5\times10^{15}ions/cm^2)$, and the other group was not mixed, and analyzed the effects of ion beam mixing. The analyses of bond strength, elemental transmissions were performed by the electron spectroscopy of chemical analysis (ESCA), light and scanning electron microscope, scratch test, and micro Vickers hardness tests. The finding led to the following conclusions. 1. In the scanning electron and light microscopic views, ion beam mixed specimens showed the ion beam mixed indentation. 2. In the micro Vickers hardness and scratch tests, ion beam mixed specimens showed higher strength than that of non mixed specimens, however, nonprecious metal showed a little change in the bond strength between mixed and non mixed specimens. 3. In the scratch test, ion beam mixed specimens showed higher shear strength than that of non treated specimens at the precious and semiprecious groups. 4. In the ESCA analysis, Au-O and Au-Si compounds were formed and transmission of the Au peak was found ion beam mixed $SiO_2/Au$ specimen, simultaneously, in the higher and lower bonded areas, and ion beam mixed $SiO_2/Ni-Cr$ specimen, oxygen, that was transmitted from $SiO_2\;to\;SiO_2/Ni-Cr$ interface combined with 12% of Ni at the interface.

  • PDF

The Characteristics of the Wafer Bonding between InP Wafers and $\textrm{Si}_3\textrm{N}_4$/InP (Direct Wafer Bonding법에 의한 InP 기판과 $\textrm{Si}_3\textrm{N}_4$/InP의 접합특성)

  • Kim, Seon-Un;Sin, Dong-Seok;Lee, Jeong-Yong;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.890-897
    • /
    • 1998
  • The direct wafer bonding between n-InP(001) wafer and the ${Si}_3N_4$(200 nm) film grown on the InP wafer by PECVD method was investigated. The surface states of InP wafer and ${Si}_3N_4$/InP which strongly depend upon the direct wafer bonding strength between them when they are brought into contact, were characterized by the contact angle measurement technique and atomic force microscopy. When InP wafer was etched by $50{\%}$ HF, contact angle was $5^{\circ}$ and RMS roughness was $1.54{\AA}$. When ${Si}_3N_4$ was etched by ammonia solution, RMS roughness was $3.11{\AA}$. The considerable amount of initial bonding strength between InP wafer and ${Si}_3N_4$/InP was observed when the two wafer was contacted after the etching process by $50{\%}$ HF and ammonia solution respectively. The bonded specimen was heat treated in $H^2$ or $N^2$, ambient at the temperature of $580^{\circ}C$-$680^{\circ}C$ for lhr. The bonding state was confirmed by SAT(Scannig Acoustic Tomography). The bonding strength was measured by shear force measurement of ${Si}_3N_4$/InP to InP wafer increased up to the same level of PECVD interface. The direct wafer bonding interface and ${Si}_3N_4$/InP PECVD interface were chracterized by TEM and AES.

  • PDF

The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

  • Yavuz, Tevfik;Eraslan, Oguz
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • PURPOSE. To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS. 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with $60^{\circ}C$ heat-treatment), and G4 (silane alonethen dried with $100^{\circ}C$ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in $N/mm^2$). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin-ceramic interface. RESULTS. SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION. The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments.

Microstructure and annealing effect on fracture behavior in the dental glass-infiltrated alumina (치아용 유리침윤 알루미나에서 파괴거동에 미치는 미세구조 및 어닐링 효과)

  • 정종원;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.330-336
    • /
    • 2000
  • Effects of microstructure and indentation stress on fracture behavior of glass-infiltrated alumina composite for dental restorative application were investigated by the Hertzian and Vickers indentation method. Indentation stress-strain curve of glass-infiltrated alumina has showed the quasi-plastic behavior - deviation from linearity at high stress and the classical Hertzian cone crack, which could be confirmed the subsurface damage micrographs using bonded-interface specimen technique. The indentation stress-strain curves for the starting preforms are strongly dependent on porosity and microstructure of the preforms. On the other hand, the curves for the infiltrated composites are relatively insensitive to these factors. The failure of composite is originated at quasi-plastic deformation region. Damage and fracture behavior due to Hertzian stress field is theoretically examined, so that the indentation stress field plays a great role in material degradation. After Hertzian indentation annealing processing changes fracture behavior of alumina composite, so that stress field in material is healed through annealing.

  • PDF

Prediction of Failure Modes for Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcement (탄소섬유보강재로 표면매립 보강된 철근콘크리트보의 파괴모드 예측)

  • Jung, Woo Tai;Park, Jong Sup;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.349-356
    • /
    • 2008
  • Recently FRP (Fiber Reinforcement Polymer) is widely used for the strengthening of damaged RC beams. Although many tests were carried out to verify flexural capacity of RC beams strengthened with FRP sheet or plate, the behavior of strengthened RC beams has not yet clearly verified. To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique experimentally and analytically, a total of 7 specimens have been tested. The experimental results revealed that specimens strengthened with NSMR improved the flexural capacity of RC beams. Also, while the NSMR specimens utilized CFRP reinforcement efficiently compared to the EBR (Externally Bonded Reinforcement) specimen, the NSMR specimens still have debonding failure between epoxy and concrete interface. This study has proposed the model to predict failure modes and failure loads. Good agreement was obtained between the predicted and the experimental results.

ENAMEL ADHESION OF LIGHT-AND CHEMICAL-CURED COMPOSITES COUPLED BY TWO STEP SELF-ETCH ADHESIVES (2단계 자가 산부식 접착제와 결합된 광중합과 화학중합 복합레진의 법랑질 접착)

  • Han, Sae-Hee;Kim, Eun-Soung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.169-179
    • /
    • 2007
  • This study was to compare the microshear bond strength $({\mu}SBS)$ of light- and chemically cured composites to enamel coupled with four 2-step self-etch adhesives and also to evaluate the incompatibility between 2-step self-etch adhesives and chemically cured composite resin. Crown segments of extracted human molars were cut mesiodistally, and a 1 mm thickness of specimen was made. They were assigned to four groups by adhesives used: SE group (Clearfil SE Bond) AdheSE group (AdheSE), Tyrian group (Tyrian SPE/One-Step Plus), and Contax group (Contax) Each adhesive was applied to a cut enamel surface as per the manufacturer's instruction. Light-cured (Filtek Z250) or chemically cured composite (Luxacore Smartmix Dual) was bonded to the enamel of each specimen using a Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n=20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at 95% level. Also the interface of enamel and composite was evaluated under FE-SEM. The results of this study were as follows ; 1. The ${\mu}SBS$ of the SE Bond group to the enamel was significantly higher than that of the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin (p < 0.05). 2. There was not a significant difference among the hdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin. 3. The ${\mu}SBS$ of the light-cured composite resin was significantly higher than that of the chemically cured composite resin when same adhesive was applied to the enamel (p < 0.05). 4. The interface of enamel and all 2-step self-etch adhesives showed close adaptation, and so the incompatibility of the chemically cured composite resin did not show.

THE ADHESIVE PATTERNS OF COMPOMER TO SALIVA-CONTAMINATED DENTIN (타액에 오염된 상아질에 대한 콤포머의 접합양상)

  • Cho, Young-Gon;Kim, Byung-Tae;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.575-586
    • /
    • 2000
  • In this study, adaptation of compomer to saliva contaminated dentin was evaluated with scanning electron microscope(SEM) and confocal laser scanning microscope(CLSM). For the SEM study, the occulusal surfaces of thirty two molar teeth were grounded to exposure dentin surfaces. The specimen were randomly assigned to control and three experimental groups with four samples in each group. In control group, Dyract and F-2000 compomer were bonded on the specimens according to the manufactures direction. Experimental groups were subdivided into three groups. They were contaminated with saliva on dentin surfaces ; Experimental group 1 : Saliva was dried with compressed air. Experimental group 2 : Saliva was rinsed with air-water spray and dried. Experimental group 3 : After polymerization of an adhesive, they were contaminated with saliva, and then saliva was rinsed with air-water spray and dried. Dyract and F-2000 compomer were bonded on saliva-treated dentin surfaces. The interfaces between dentin and compomer were observed with SEM. For the CLSM study, Class V cavities were prepared in buccal and ligual surfacess of thirty two molars. The specimens were divided into control and experimental groups. Class V cavities in experimental group were contaminated with saliva and those surfaces in each experimental groups received the same treatments as for the SEM study. Cavities were applied Prime & Bond 2.1 and F-2000 compomer primer/adhesive that were mixed with fluorescein, and then were filled with Dyract and F-2000 compomer. Specimens were embedded in transparent acrylic resin and sectioned buccolingual1y with diamond wheel saw, and then mounted on cover slide for CLSM study. The interface between cavity and compomer was observed by fluoresence imaging with a CLSM. The results were as follows : 1. In SEM exammination of Dyract group, control group, experimental group 2, 3 showed close adaptation to dentin and hybrid layer of $3{\sim}4{\mu}m$ diameter. Interfacial gap between compomer and dentin in experimental group 1 was wider than in control group. 2. In SEM examination of F-2000 group, adaptation to dentin of control group was closer than Dytact control group, but hybrid-like layer was not observed. Interfacial gap between compomer and dentin in experimental group 1 was wider than in Dyract experimental group 1. 3. In dissolution specimens of Dyract and F-2000 group, resin tags penetrated through dentinal tubules in control group and experimental group 1 and 3, but the penetration of resin tag was irregular and partial in experimental group 1. 4. In CLSM exammination of Dyract and F-2000 group, adhesive patterns of control and experimental groups showed same as in SEM. This result suggests the treatment methods, rinsing & drying, repeating all adhesive procedures, will produce good effect on adaptation of compomer to dentin if the dentin surface or polymerized adhesive is contaminated by saliva.

  • PDF

Comparison of the elastic modulus among three dentin adhesives before and after thermocycling (열시효 처리에 따른 상아질 접착 계면의 탄성계수의 변화 비교)

  • Chang, Ju-Hea;Lee, In-Bog;Cho, Byeong-Hoon;Kim, Hae-Young;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The purpose of this study was to determine the effects on the elastic moduli of the adhesive and the hybrid layer from thermocycling. Twenty one human molars were used to create flat dentin surfaces. Each specimen was bonded with a light-cured composite using one of three commercial adhesives (OptiBond FL [OP], Clearfil SE Bond [CL], and Xeno III [XE]). These were sectioned into two halves and subsequently cut to yield 2-mm thickness specimens; one specimen for immediate bonding test without thermocycling and the other subjected to 10,000 times of thermocycling. Nanoindentation test was performed to measure the modulus of elasticity of the adhesive and the hybrid layer, respectively, using an atomic force microscope. After thermocycling, XE showed a significant decrease of the modulus in the adhesive layer (p < 0.05). Adhesives containing hydrophilic monomers are prone to hydrolytic degradation. It may result in the reduced modulus of elasticity, which leads to the mechanically weakened bonding interface.

Fluxless Bonding Method between Sn and In Bumps Using Ag Capping Layer (Ag층을 이용한 Sn과 In의 무 플럭스 접합)

  • Lee Seung-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.23-28
    • /
    • 2004
  • We utilized Ag capping layer for fluxless bonding. To investigate the effect of Ag capping layer, two sets of sample were used. One set was bare In and Sn solders. The other set was In and Sn solders with Ag capping layer. In ($10{\mu}m$) and Sn ($10{\mu}m$) solders were deposited on Cu/Ti/Si substrate using thermal-evaporation, and Ag ($0.1{\mu}m$) capping layers were deposited on In and Sn solders. Solder joints were made by joining two In and Sn deposited specimens at $130^{\circ}C$ for 30 s under 0.8, 1.6, 3.2 MPa using thermal compression bonder. The contact resistance was measured using four-point probe method. The shear strength of the solder joints was measured by the shear test of cross-bar sample in the direction. The microstructure of the solder joints was characterized with SEM and EDS. In and Sn solders without Ag capping layers were only bonded at $130^{\circ}C$ under high bonding pressure. Also the shear strength of the In-Sn solder joints under was lower than that of the Ag/In-Ag/Sn solder joints. The resistance of the solder joints was $2-4\;m{\Omega}$ The solder joints consisted of In-rich phase and Sn-rich phase and the intermixed compounds were found at the interface. As bonding pressure increased, the intermixed compounds formed more.

  • PDF

THE CHANCE OF ADAPTABILITY CHANCE IN ADHESIVE SYSTEMS TO DENTIN SUBSTRTE ACCORDING TO STORAGE TIME (상아질 접착 후 저장기간에 따른 접착제의 접착력 변화)

  • Cho, Young-Gon;Ban, Il-Hwan;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.204-214
    • /
    • 2005
  • This study compared the microtensile bond strength (${\mu}$TBS) and microscopic change of two 2-step and two 1-step self-etching adhesives to dentin according to storage times in distilled water. Occlusal dentin was exposed in 48 human molars. They were divided to four groups by different adhesives: SE Bond group (Clearfil SE Bond), AdheSE group (AdheSE). Adper group (Adper Prompt L-Pop), and Xeno group (Xeno III) . Each group was stored in 37$^{\circ}C$ distilled water for 1, 15, and 30 days. Resin-bonded specimens were sectioned into beams and subjected to ${\mu}$TBS testing with a crosshead speed of 1 mm/minute. For SEM observation, one specimen was selected and sectioned in each group after each stroage time. Resin-dentin interface was observed under FE-SEM. In all storage times, mean ${\mu}$TBS of SE group was significantly higher than those of other groups (p < 0.05). There was no significant difference between mean ${\mu}$TBS of SE group and AdheSE group among all storage times, but significant difference between 1- and 30-day storage in mean y${\mu}$TBS of Adper group and Xeno group (p > 0.05). For 1-and 15-day storage, all groups showed the close adaptation between resin-dentin interfaces. For 30-day storage, resin-dentin interfaces showed wide gap in Adper group and separate pattern in Xeno III group.