• Title/Summary/Keyword: Interestingness

Search Result 48, Processing Time 0.019 seconds

A New Interestingness Measure in Association Rules Mining (연관규칙 탐색에서 새로운 흥미도 척도의 제안)

  • Ahn, Kwang-Il;Kim, Seong-Jip
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • In this paper, we present a new measure to evaluate the interestingness of association rules. Ultimately. to evaluate whether a rule is interesting or not is subjective. However, an interestingness measure is useful in that it shows the cause for pruning uninteresting rules statistically or logically. Some interestingness measures have been developed in association rules mining. We present an overview of interestingness measures and propose a new measure. A comparative study of some interestingness measures is made on an example dataset and a real dataset. Our experiments show that the new measure can avoid the discovery of misleading rules.

The Development of Relative Interestingness Measure for Comparing with Degrees of Association

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1269-1279
    • /
    • 2008
  • Data mining is the technique to find useful information in huge databases. One of the well-studied problems in data mining is exploration for association rules. An association rule technique finds the relation among each items in massive volume databases by several interestingness measures. An important and useful classification scheme of interestingness measures may be based on user-involvement. This results in two categories - objective and subjective measures. This paper present some relative interestingess measures to compare with degrees of association for two groups. A comparative study with some relative interestingness measures is shown by numerical example. The results show that the relative net confidence is the best relative interestingness measure.

  • PDF

Decision process for right association rule generation (올바른 연관성 규칙 생성을 위한 의사결정과정의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.263-270
    • /
    • 2010
  • Data mining is the process of sorting through large amounts of data and picking out useful information. An important goal of data mining is to discover, define and determine the relationship between several variables. Association rule mining is an important research topic in data mining. An association rule technique finds the relation among each items in massive volume database. Association rule technique consists of two steps: finding frequent itemsets and then extracting interesting rules from the frequent itemsets. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper explores some problems for two interestingness measures, confidence and net confidence, and then propose a decision process for right association rule generation using these interestingness measures.

Design and Implementation of an Interestingness Analysis System for Web Personalizatoion & Customization

  • Jung, Youn-Hong;Kim, I-I;Park, Kyoo-seok
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.707-713
    • /
    • 2003
  • Convenience and promptness of the internet have been not only making the electronic commerce grow rapidly in case of website, analyzing a navigation pattern of the users has been also making personalization and customization techniques develop rapidly for providing service accordant to individual interestingness. Web personalization and customization skill has been utilizing various methods, such as web log mining to use web log data and web mining to use the transaction of users etc, especially e-CRM analyzing a navigation pattern of the users. In this paper, We measure exact duration time of the users in web page and web site, compute weight about duration time each page, and propose a way to comprehend e-loyalty through the computed weight.

  • PDF

The Proposition of Conditionally Pure Confidence in Association Rule Mining

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1141-1151
    • /
    • 2008
  • Data mining is the process of sorting through large amounts of data and picking out useful information. One of the well-studied problems in data mining is the exploration of association rules. An association rule technique finds the relation among each items in massive volume database. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper propose a conditional pure confidence to evaluate association rules and then describe some properties for a proposed measure. The comparative studies with confidence and pure confidence are shown by numerical example. The results show that the conditional pure confidence is better than confidence or pure confidence.

  • PDF

Non-linear regression model considering all association thresholds for decision of association rule numbers (기본적인 연관평가기준 전부를 고려한 비선형 회귀모형에 의한 연관성 규칙 수의 결정)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.267-275
    • /
    • 2013
  • Among data mining techniques, the association rule is the most recently developed technique, and it finds the relevance between two items in a large database. And it is directly applied in the field because it clearly quantifies the relationship between two or more items. When we determine whether an association rule is meaningful, we utilize interestingness measures such as support, confidence, and lift. Interestingness measures are meaningful in that it shows the causes for pruning uninteresting rules statistically or logically. But the criteria of these measures are chosen by experiences, and the number of useful rules is hard to estimate. If too many rules are generated, we cannot effectively extract the useful rules.In this paper, we designed a variety of non-linear regression equations considering all association thresholds between the number of rules and three interestingness measures. And then we diagnosed multi-collinearity and autocorrelation problems, and used analysis of variance results and adjusted coefficients of determination for the best model through numerical experiments.

Exploration of PIM based similarity measures as association rule thresholds (확률적 흥미도를 이용한 유사성 측도의 연관성 평가 기준)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1127-1135
    • /
    • 2012
  • Association rule mining is the method to quantify the relationship between each set of items in a large database. One of the well-studied problems in data mining is exploration for association rules. There are three primary quality measures for association rule, support and confidence and lift. We generate some association rules using confidence. Confidence is the most important measure of these measures, but it is an asymmetric measure and has only positive value. Thus we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure to find a solution to this problem. The comparative studies with support, two confidences, lift, and some similarity measures by probabilistic interestingness measure are shown by numerical example. As the result, we knew that the similarity measures by probabilistic interestingness measure could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values.

Similarity Measurement with Interestingness Weight for Improving the Accuracy of Web Transaction Clustering (웹 트랜잭션 클러스터링의 정확성을 높이기 위한 흥미가중치 적용 유사도 비교방법)

  • Kang, Tae-Ho;Min, Young-Soo;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.717-730
    • /
    • 2004
  • Recently. many researches on the personalization of a web-site have been actively made. The web personalization predicts the sets of the most interesting URLs for each user through data mining approaches such as clustering techniques. Most existing methods using clustering techniques represented the web transactions as bit vectors that represent whether users visit a certain WRL or not to cluster web transactions. The similarity of the web transactions was decided according to the match degree of bit vectors. However, since the existing methods consider only whether users visit a certain URL or not, users' interestingness on the URL is excluded from clustering web transactions. That is, it is possible that the web transactions with different visit proposes or inclinations are classified into the same group. In this paper. we propose an enhanced transaction modeling with interestingness weight to solve such problems and a new similarity measuring method that exploits the proposed transaction modeling. It is shown through performance evaluation that our similarity measuring method improves the accuracy of the web transaction clustering over the existing method.

The Determinants of Pakistani Tourists' Visit Intention to Korea in SNS Context- The Effect of Usefulness, Interestingness and Involvement

  • Muhammad RAZA;Jin-Kwon KIM;Tony-Donghui AHN
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.2
    • /
    • pp.33-46
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze the relationship between characteristics of social media sites (SNS) and the intention of Pakistani tourists to visit South Korea while determining the role of usefulness, interestingness, and involvement of tourists. Research design, data and methodology: A research model was developed through the previous research, and the questioner-based survey was conducted on Pakistani tourists visiting Korea. The survey data was collected by following multiple hypotheses: the relationship between SNS tourism information and perception of SNS, the relationship between SNS perception and intention to visit, and adjustment of involvement in the relation between tourism information characteristics, and SNS perception. We used SPSS and AMOS24.0 statistical tools to analyze the hypothesis testing data. Results: Based on the data analysis, the study found that the characteristics of SNS have a positive effect on intention to visit via users' perception like usefulness and interestingness. The involvement has a moderating effect between SNS characteristics and users' perception. In the group with high involvement, the degree of influence of the quality factor of SNS on user perception was greater than in the group with low involvement. Conclusions: This study demonstrated that traveler's involvement has a moderating effect on the relationship between SNS characteristics and visit intention for Pakistani travelers visiting Korea. It shows that practitioners or researchers should establish and operate SNS strategies in consideration of user involvement.