• Title/Summary/Keyword: Interest rate differential

Search Result 23, Processing Time 0.019 seconds

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

Self-Tour Service Technology based on a Smartphone (스마트 폰 기반 Self-Tour 서비스 기술 연구)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.147-157
    • /
    • 2010
  • With the immergence of the iPhone, the interest in Smartphones is getting higher as services can be provided directly between service providers and consumers without the network operators. As the number of international tourists increase, individual tourists are also increasing. According to the WTO's (World Tourism Organization) prediction, the number of international tourists will be 1.56 billion in 2020,and the average growth rate will be 4.1% a year. Chinese tourists, in particular, are increasing rapidly and about 100 million will travel the world in 2020. In 2009, about 7.8 million foreign tourists visited Korea and the Ministry of Culture, Sports and Tourism is trying to attract 12 million foreign tourists in 2014. A research institute carried out a survey targeting foreign tourists and the survey results showed that they felt uncomfortable with communication (about 55.8%) and directional signs (about 21.4%) when they traveled in Korea. To solve this inconvenience for foreign tourists, multilingual servicesfor traffic signs, tour information, shopping information and so forth should be enhanced. The appearance of the Smartphone comes just in time to provide a new service to address these inconveniences. Smartphones are especially useful because every Smartphone has GPS (Global Positioning System) that can provide users' location to the system, making it possible to provide location-based services. For improvement of tourists' convenience, Seoul Metropolitan Government hasinitiated the u-tour service using Kiosks and Smartphones, and several Province Governments have started the u-tourpia project using RFID (Radio Frequency IDentification) and an exclusive device. Even though the u-tour or u-tourpia service used the Smartphone and RFID, the tourist should know the location of the Kiosks and have previous information. So, this service did not give the solution yet. In this paper, I developed a new convenient service which can provide location based information for the individual tourists using GPS, WiFi, and 3G. The service was tested at Insa-dong in Seoul, and the service can provide tour information around the tourist using a push service without user selection. This self-tour service is designed for providing a travel guide service for foreign travelers from the airport to their destination and information about tourist attractions. The system reduced information traffic by constraining receipt of information to tourist themes and locations within a 20m or 40m radius of the device. In this case, service providers can provide targeted, just-in-time services to special customers by sending desired information. For evaluating the implemented system, the contents of 40 gift shops and traditional restaurants in Insa-dong are stored in the CMS (Content Management System). The service program shows a map displaying the current location of the tourist and displays a circle which shows the range to get the tourist information. If there is information for the tourist within range, the information viewer is activated. If there is only a single resultto display, the information viewer pops up directly, and if there are several results, the viewer shows a list of the contents and the user can choose content manually. As aresult, the proposed system can provide location-based tourist information to tourists without previous knowledge of the area. Currently, the GPS has a margin of error (about 10~20m) and this leads the location and information errors. However, because our Government is planning to provide DGPS (Differential GPS) information by DMB (Digital Multimedia Broadcasting) this error will be reduced to within 1m.