• Title/Summary/Keyword: Intercooling

Search Result 9, Processing Time 0.021 seconds

Simulation Study on the Performance Improvement of a Transcritical Carbon Dioxide Cycle (초월임계 이산화탄소 사이클의 성능향상에 관한 시뮬레이션 연구)

  • 조홍현;김용찬;서국정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.158-166
    • /
    • 2004
  • The performance of a heat pump using $CO_2$ is predicted and analyzed by using a cycle simulation model developed in this study. Cycle simulations are conducted by varying design parameters and operating conditions with the applications of advanced techniques to improve system performance. The applied systems in the simulations are internal heat exchanger, expander, and 2-stage compression with intercooling. As a result, the applications of advanced techniques improve the heating and cooling performances of the transcritical $CO_2$ cycle by 8∼26% and 20∼30%, respectively, over the basic cycle.

Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle ($CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구)

  • Song, Chan-Ho;Lee, Kong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF

Comparison of Various Heat Exchanger Performances in order for Air Compressor Intercooler Application (공기압축기의 인터쿨러 선정을 위한 열교환기의 형상별 성능해석)

  • Yoo, Sang-Hoon;Park, Sang-Gu;Yoon, Jeong-Pil;Jeong, Ji-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.73-81
    • /
    • 2008
  • Intercooling and aftercooling are required in order to operate air compressor, these are conducted through air-cooled or water-cooled heat exchangers. This study aims to find more suitable type of heat exchanger as a water-cooled intercooler of air compressor. Comparative performance evaluation among fin-tube heat exchanger and shell-and-tube (S&T) heat exchanger having various tubes such as circular tube, spiral tube, and internally finned tube was conducted. Thermal-hydraulic performance of each heat exchanger type is evaluated in terms of temperature drop and pressure drop. The comparisons show that shell-and-tube heat exchangers may have similar and larger heat transfer capacity to the fin-tube heat exchanger if tube diameter is reduced and multiple pass is adopted. For these cases, however, compressed air pressure drop in shell-and-tube heat exchanger become much larger than that in fin-tube heat exchanger.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System (Alstom Power의 가압유동층 복합발전 시스템 특성)

  • 이윤경;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.

The liquefaction system of the exhaust gas using cold energy in underwater engine (수중기관에서 냉열을 이용한 배기가스 액화시스템 해석)

  • Lee, Geun-Sik;Jang, Yeong-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1591-1602
    • /
    • 1996
  • In operating the underwater engines such as encountered in exploring submarines, the dumping of the exhaust gas out of the engine requires a large portion of the total power, frequently amounting to 25-30% of the power generated. This unfavorable circumstance can be cured by liquefying the exhaust gas and storing it. In the present study, two liquefaction systems were simulated to enhance the overall efficiency; one is a closed cycle diesel engine and the other is a closed cycle LNG engine. The liquefied natural gas (LNG) is chosen as a fuel, not only because its use is economical but also because its cold energy can be utilized within the liquefaction system. Since a mixture of oxygen and carbon dioxide is used as an oxidizer, liquefying carbon dioxide is of major concern in this study. For further improving this system, the intercooling of the compressor is devised. The necessary power consumed for the liquefying system is examined in terms of the related properties such as pressure and temperature of the carbon dioxide vessel as a function of the amount of the exhaust gas which enters the compressor. The present study was successful to show that much gain in the power and reduction of the vessel pressure could be achieved in the case of the closed cycle LNG engine. The compression power of exhaust gas were observed remarkably lower, typically only 6.3% for the closed cycle diesel engine and 3.4% for the closed cycle LNG engine respectively, out of net engine power. For practicality, a design -purpose map of the operating parameters of the liquefaction systems was also presented.

Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture (0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증)

  • Park, Jong Min;Cho, Seong Pill;Lim, Ta Young;Lee, Young ill
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.