• Title/Summary/Keyword: Interannual Change

Search Result 40, Processing Time 0.025 seconds

Ocean Dynamic Processes Responsible for the Interannual Variability of the Tropical Indian Ocean SST Associated with ENSO

  • Kug, Jong-Seong;An, Soon-Il
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.211-219
    • /
    • 2010
  • The interannual variability of the tropical Indian Ocean SST is investigated by analyzing the ocean assimilation data. It is significant that since 1970, ENSO events frequently followed the Indian Ocean Dipole event. The SST tendency due to the dynamical SST advections over the tropical Indian Ocean sufficiently overwhelms that due to other thermodynamic process during the fall and winter of ENSO. Especially, the strong cooling due to the anomalous vertical advection by the mean upwelling and the warming due to the horizontal advection are attributed to the cold SST during the fall and the warm SST during the winter, respectively. The significant warming between winter and spring over the southwestern Indian Ocean turns out to be due to the vertical advection of the mean subsurface temperature by the anomalous upwelling during the winter and the vertical advection of the anomalous subsurface temperature by the mean upwelling from winter to spring. We speculate that when the Indian Ocean Dipole events concurred with the ENSO, the surface wind is so strong enough as to generate the change in the SST dynamically and overwhelm the SST changes associated with other effects.

Sea-level Change and Coastal Erosion (해수면 변화와 해안 침식)

  • Jeon, Dong-Chull
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.289-304
    • /
    • 1995
  • Time series of the relative sea levels at the selected tide-gauge stations in the North Pacific and historical aerial photographs in the Hawaiian Islands are analyzed. Long-term rising trend of sea level ranges from +1 to +5 mm/yr at most of the stations, which is primarily due to global warming and tectonic motion of the plates. The annual and interannual fluctuations of sea level result from the thermal expansion/contraction of sea-surface layer due to the annual change of the solar radiation and possibly from a coupled ocean-atmosphere phenomenon associated with an ENSO event, respectively. Sea-level changes in three different time-scales (linear trend. annual oscillation, and interannual fluctuation) and their quantitative contribution to the shoreline changes as a result of long-term cross-shore sediment transport arc hypothesized.

  • PDF

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

Hadley Circulation Strength Change in Response to Global Warming: Statistics of Good Models

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.665-672
    • /
    • 2016
  • In this study, we examine future changes in the Hadley cell (HC) strength using CMIP5 climate change simulations. The current study is an extension of a previous study by Seo et al. that used all 30 available models. Here, we select 18-23 well-performing models based on their significant internal sensitivity of the interannual HC strength variation to the latitudinal temperature gradient variation. The model projections along with simple scaling analysis show that the inter-model variability in the HC strength change is a result of the inter-model spread in the meridional temperature gradient across the subtropics for both DJF and JJA, not by the tropopause height or gross static stability change. The HC strength is expected to weaken significantly during DJF, while little change is expected in the JJA HC strength. Compared to the calculations with all model members, selected model statistics increase the linear correlation between the changes in HC strength and meridional temperature gradient by 13~23%, confirming the robust sensitivity of the HC strength to the meridional temperature gradient. Two scaling equations for the selected models predict changes in HC strength better than all-member predictions. In particular, the prediction improvement in DJF is as high as 30%. The simple scaling relations successfully predict both the ensemble-mean changes and model-to-model variations in the HC strength for both seasons.

Identification of the Anthropogenic Land Surface Temperature Distribution by Land Use Using Satellite Images: A Case Study for Seoul, Korea

  • Bhang, Kon Joon;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.249-260
    • /
    • 2017
  • UHI (Urban Heat Island) is an important environmental issue occurring in highly developed (or urbanized) area such as Seoul Metropolitan City of Korea due to modification of the land surface by man-made structures. With the advance of the remote sensing technique, land cover types and LST (Land Surface Temperature) influencing UHI were frequently investigated describing that they have a positive relationship. However, the concept of land cover considers material characteristics of the urban cover in a comprehensive way and does not provide information on how human activities influence on LST in detail. Instead, land use reflects ways of land use management and human life patterns and behaviors, and explains the relationship with human activities in more details. Using this concept, LST was segmented according to land use types from the Landsat imagery to identify the human-induced heat from the surface and interannual and seasonal variation of LST with GIS. The result showed that the LST intensity of Seoul was greatest in the industrial area and followed by the commercial and residential areas. In terms of size, the residential area could be defined as the major contributor among six urban land use types (i.e., residential, industrial, commercial, transportation, etc.) affecting UHI during daytime in Seoul. For temperature, the industrial area was highest and could be defined as a major contributor. It was found that land use type was more appropriate to understand the human-induced effect on LST rather than land cover. Also, there was no significant change in the interannual pattern of LST in Seoul but the seasonal difference provided a trigger that the human life pattern could be identified from the satellite-derived LST.

Observation of Water Property Variations in the Western Channel of the Korea Strait During 2006-2010 (2006~2010년 기간 동안 대한해협 서수도에서 관측된 해수 물성의 변동)

  • Min, Hong-Sik;Park, Jae-Hun;Choi, A-Ra;Park, Young-Gyu;Shin, Kyoung-Soon;Jang, Pung-Guk
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.325-336
    • /
    • 2011
  • Seasonal to inter-annual variations of water properties in the western channel of the Korea Strait are investigated using quasi-monthly hydrographic observations collected during 2006-2010. Weak vertical temperature and salinity gradients are observed during the winter months and these remain until May. At the upper layer, temperature increases from March and reaches a maximum in August, while salinity decreases during the same period. Near-bottom water shows low temperatures during late winter and fall with a minimum peak in September. Korea Strait Bottom Cold Water produces thick layers (>20 m) in 2006 and 2010, while it is observed very near the bottom with relatively high temperature in 2008 and 2009.

The Distribution and Interannual Variation in Suspended Solid and Particulate Organic Carbon in the Northern East China Sea (동중국해 북부해역에서 부유물질과 입자성유기탄소의 분포 특성 및 연간 변화)

  • Kim, Dong-Seon;Choi, Sang-Hwa;Kim, Kyung-Hee;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.219-229
    • /
    • 2009
  • In order to establish annual variations in the marine ecosystem of the East China Sea, suspended solids (SSs) and particulate organic carbon (POC) were extensively investigated in the northern part of the East China Sea from August 2003 to April 2008. Surface SS concentrations showed large spatial variations in spring and fall, but not in summer. Surface SS concentrations in spring were lower than those in summer and fall. In summer, SSs discharged from Changjiang were mostly deposited in the coastal areas and did not reach our study area which was located about 260 km from the river mouth. High SS concentrations were observed near the bottom, which resulted from resuspension of bottom sediments by the bottom currents. Surface POC concentrations did not exhibited large seasonal variations. Phytoplankton biomass was a main factor controlling surface POC concentrations. POC/chlorophyll ratios showed large seasonal variations, with maximum numbers in summer. POC/PON ratios were higher in summer than the Redefied ratio (6.6), while they were lower in spring and fall. In summer, higher POC/chlorophyll and POC/PON ratios were probably attributed to the high phytoplankton mortality caused by nutrient depletion in surface waters.

Spatio-temporal variability of future wind energy over the Korean Peninsular using Climate Change Scenarios (기후변화 시나리오를 활용한 한반도 미래 풍력에너지의 시공간적 변동성 전망)

  • Kim, Yumi;Lim, Yoon-Jin;Lee, Hyun-Kyoung;Choi, Byoung-Choel
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.833-848
    • /
    • 2014
  • The assessment of the current and future climate change-induced potential wind energy is an important issue in the planning and operations of wind farm. Here, the authors analyze spatiotemporal characteristics and variabilities of wind energy over Korean Peninsula in the near future (2006-2040) using Representative Concentration Pathway(RCP) scenarios data. In this study, National Institute of Meteorological Research (NIMR) regional climate model HadGEM3-RA based RCP 2.6 and 8.5 scenarios are analyzed. The comparison between ERA-interim and HadGEM3-RA during the period of 1981-2005 indicates that the historical simulation of HadGEM3-RA slightly overestimates (underestimates) the wind energy over the land (ocean). It also shows that interannual and intraseasonal variability of hindcast data is generally larger than those of reanalysis data. The investigation of RCP scenarios based future wind energy presents that future wind energy density will increase over the land and decrease over the ocean. The increase in the wind energy and its variability is particularly significant over the mountains and coastal areas, such as Jeju island in future global warming. More detailed analysis presents that the changes in synoptic conditions over East Asia in future decades can influence on the predicted wind energy abovementioned. It is also suggested that the uncertainty of the predicted future wind energy may increase because of the increase of interannual and intra-annual variability. In conclusion, our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

  • PDF

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.