• Title/Summary/Keyword: Interaction of jets

Search Result 52, Processing Time 0.018 seconds

Heat transfer characteristics of multiple slot jets at the surface of protruding heated blocks (돌출 발열블록 표면에서의 배열 충돌제트에 의한 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.274-279
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impinging multiple slot jets has been performed. The effects of jet-to-jet distances(S=16B, 24B), dimensionless nozzle-to-block distances(H/B=2, 6) and jet Reynolds numbers(Re=2000, 3900, 5800, 7800) on the local and average heat transfer coefficients have been examined with five isothermally heated blocks at streamwise block spacing(p/w=1). To clarify local heat transfer characteristics, naphthalene sublimation technique was used. From the results, it was found that the local and average heat transfer of heated blocks increases with decreasing jet-to-jet distance and increasing jet Reynolds number. Measurements of local heat transfer coefficients have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. In the case of S/B=16, H/B=6 and Re=7800, maximum average Nusselt number of overall blocks was obtained.

  • PDF

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

Heat transfer characteristics of impinging flat plate of multiple slot jets by changing of jet-to-jet distance (배열 슬롯제트의 노즐간격 변화에 따른 충돌면에서의 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho;Ko, Wan-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.534-539
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics on confined jet impinging plate using multiple slot jets has been performed. The effects of jet Reynolds numbers(Re=2000, 3950, 5900, 7900), dimensionlesss slot-to-plate distances(H/B=2, 4, 6, 8) and jet-to-jet distances(S=16B, 20B, 24B, 30B) on the local and average heat transfer coefficients have been examined. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. From the experimental results, it was found that the local and average heat transfer rates increase with increasing jet Reynolds number. Measurements of local heat transfer coefficients produced by multiple of slot jets have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. At S/B=20, Re=7900 and H/B=6, maximum average Nusselt number is obtained.

  • PDF

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

Methodologies for Analyzing Interaction between Shape Charge Jets and Targets (성형작약제트와 표적 상호작용 해석 방법론)

  • Kang, Min Ah;Park, Sung Jun;Greulich, S.;Hartmann, T.;Moon, Sei-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.11-21
    • /
    • 2022
  • Two methods for analyzing interaction between shaped charge jets and targets are taken in AVEAM-MT (ADD Vulnerability and Effectiveness Assessment Model for Materiel Target), which is a model for vulnerability analysis of materiel targets and being developed by ADD. One is an empirical method improved from the Fireman-Pugh technique for rapid penetration calculation into target components. The other is ADD-TSC(ADD Tandem Shaped Charge), which is a physics-based model extended to be applicable for shaped charge jets from the Walker-Anderson penetration model for higher fidelity analysis. In this paper, the two methods are briefly described, and the empirical technique is compared to the physics-based model in the prediction of residual penetration capacity. The latter is also compared to experimental results found in literature in predicting penetration capacity. These comparisons show that both methods can be used for fast calculations or higher fidelity calculations in vulnerability analysis models like AVEAM-MT which is required to perform a considerable amount of iterative simulation for damage analysis.

CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS (플라즈마 합성제트를 이용한 사각 실린더 유동의 제어)

  • Kim, Dong-Joo;Kim, Kyoung-Jin
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS (동축제트의 와류주파수 및 혼합특성에 대한 수치해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.49-55
    • /
    • 2009
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometric effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that the flow mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface (오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교)

  • Youn, Sungji;Seo, Heerim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.