• Title/Summary/Keyword: Interaction of Flames

Search Result 105, Processing Time 0.023 seconds

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

Experimental Studies on the Interactions between Propagating Flames and Different Multiple Obstacles in an Explosion Chamber with a L/D Ratio of 0.57 (0.57의 L/D 비를 가지는 폭발챔버에서 전파하는 화염과 다중 장애물의 상호작용에 관한 실험적 연구)

  • Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.70-77
    • /
    • 2012
  • Experimental investigations were performed to examine the characteristics of propagating flame fronts around multiple bars within a rectangular chamber. The explosion chamber is 400 mm in height, $700{\times}700mm^2$ in cross-section and has a large top-venting area, $A_v$, of $700{\times}210mm^2$. This results in a value of 0.44 for $A_v/V^{2/3}$ and a L/D value of 0.57. The multiple obstacles of length 700 mm with a blockage ratio of 30 % were placed within the chamber. Temporally resolved flame front images were recorded by a high speed video camera to investigate the interaction between the propagating flame and the obstacles. Results showed that the flame propagation speeds before the flame impinges onto the obstacle almost equal to the laminar burning velocity. As the propagating flame impinged on the obstacle, the central region of flame began to become concave, this resulted in the flame deceleration in the region. As the flame interacted with the modified flow filed generated behind the central obstacle, the probability density functions(PDFs) of the local flame displacement speed were extensively distributed toward higher speeds.

Combustion Instability Characteristics due to the Beating Phenomenon in the Dual Swirl Gas Turbine Model Combustor (이중선회 가스터빈 모델연소기에서 맥놀이 현상으로 인한 연소불안정 특성)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • This study is the results related to the combustion instability phenomenon with respect to combustor length and thermal power as variables in dual swirling combustor configuration. Especially, the beating phenomena having the insensitive resonance frequency of relatively constant peaks are observed when the combustor lengths increase in a lower power regime. This beating phenomenon might be occurred due to the interacting behaviors of pilot and main burners with different periods. Therefore, such insensitive response seems to be a result of the beating phenomenon with interaction between the pilot and main flames even though the combustor lengths are increased.

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.