• Title/Summary/Keyword: Interaction energy between particle and the substrate

Search Result 3, Processing Time 0.017 seconds

The Effect of Particle Size on the Detergency of Particulate Soil (고형오구 입자크기가 고형오구의 세척성에 미치는 영향)

  • Mun, Mi-Hwa;Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.4
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrate (4H-SiC기판 위의 자기구조화된 Ag/Ti 나노입자 제어를 위한 열처리 분석)

  • Kim, So-Mang;OH, Jong-Min;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.177-180
    • /
    • 2016
  • The effect of varying thickness of Ag/Ti metal bilayer and annealing time have investigated for controlling self-organized nanoparticles (NPs) on 4H-SiC substrate. In addition, Glass and Si substrate which have different surface energy from SiC were fabricated for analyzing interaction of agglomeration. The results of FE-SEM indicated the different formation behaviors of NPs in various ranges of fabrication condition. The surface energy was measured by using a Contact Angle Analyzer. The formation of network-like NPs was observed on Glass and 4H-SiC, respectively, whereas it was not the case on Si substrates. It has been found that the size of NPs increases with decreasing surface energy, due to particle size-dependent hydrophilic properties of substrates. The different formation behavior was explained by using Young's equation for the contact angles between the metal and different substrates.