• Title/Summary/Keyword: Interaction Force

Search Result 1,334, Processing Time 0.025 seconds

Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field

  • Park, Sun-Kyung;Lee, Choong-Keun;Lee, Sang-Ho;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.253-261
    • /
    • 2002
  • Vibrational properties of ferrocyanide complex ion, $[Fe(CN)_6]^{4-}$ , have been studied based on the force constants obtained from the density functional calculations at B3LYP/$6-31G^{\ast\ast}$ level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of C-Fe-C, the linear bending deformations of Fe-C${\equiv}$N and the stretching vibrations of Fe-C have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.

Interaction force analysis by peak value tracking in optical soliton transmission system (광 솔리톤 전송 시스템에 있어서 최대치 추적에 의한 상호 작용력 분석)

  • 변승우;송재원
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.15-22
    • /
    • 1996
  • In the soliton transmission system for a long-length and high bit rate data transmission systme using the nonlinear/dispersive optical fibers, the improtant problem is the loss characteristics and is the limited transmission rate by interaction forces. In this paper, It is explained the reasons of moved time position for the soliton peak value due to interaction force sof adjacent solitons. And for the analysis of interaction force affection level in the losslessmedia, we define the percent parameter of error rate due to the interaction forces and propose the optimum time distance of adjacent solitons by peak value tracking methods. With the results, initial percent of error is approximately 50% when itme difference between adjacent solitons is 5 times of funddametnal soliton pulse width. And it is confirmed that maximum transmission length of th esolitons is approximately 38 times of fundamental soliton period, which the maximum allowable percoent of error is 50%.

  • PDF

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

A Study on Application of Force-based Track Irregularity Analysis Method (하중기반의 궤도틀림 분석기법 적용에 관한 연구)

  • Hwang, Seon-Kwon;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, shape-based track management by analyzing track irregularity was studied in terms of force-based track irregularity analysis by numerical analysis of wheel-rail interaction force using by the measured vertical irregularity. The effect of the vertical irregularity of the track due to the difference in track types on the wheel-rail interaction force and the track acceleration in the connecting section of the sleeper floating track and the direct fixation track on concrete bed were analyzed. As the results of this study, the measured vertical irregularity was directly affect the vertical wheel load (the wheel-rail interaction force) and the rail acceleration, and it has been demonstrated to change consistently. In this study, the adequacy and necessity of the force-based track irregularity analysis method was verified based on the wheel-rail interaction analysis using the the measured vertical irregularity.

ADHESION PHENOMENON AND ITS APPLICATION TO MANIPULATION FOR MICRO-ASSEBMLY

  • Takahashi, Kunio;Himeno, Hideo;Saito, Shigeki;Onzawa, Tadao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.781-784
    • /
    • 2002
  • Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. For the purpose of microassembly, theoretical understanding is required for the Adhesion phenomenon. Authors have developed a force measurement system in an ultra-high vacuum chamber of Auger electron spectroscopy. The force between arbitrary combination of materials can be measured at a pressure less than 100 nPa after and before Ar ion sputtering and chemical analysis for several atomic layers of the surface. The results are successfully interpreted with a theory of contact mechanics. Since surface energy is quite important in the interpretation, electronic theory is used to evaluate the surface energy. In the manipulation of small objects, the adhesional force is always attractive. Repulsive force is essential for the manipulation. It can be generated by Coulomb interaction. The voltage required for detachment is theoretically analyzed and the effect of boundary conditions on the detachment is obtained. The possibility and limitations of micro-manipulation using both the adhesion phenomenon and Coulomb interaction are theoretically clarified. Its applicability to nano-technology is found to be expected.

  • PDF

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Zhang, Guangzhe;Dang, Wengang;Herbst, Martin;Song, Zhengyang
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.421-432
    • /
    • 2020
  • Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

The Dynamic Interaction Between Propulsion And Levitation System In a MAGLEV (자기부상열차의 추진시스템과 부상시스템의 상호 영향)

  • 김국진;강병관;이종성
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.119-128
    • /
    • 1998
  • An electromagnets and a single-sided linear induction motor(SLIM) are used for suspension and propulsion equipment respectively. The electromagnets and SLIM are installed in the same frame, called a bogie, to reduce the volume under the vehicle floor and to raise the response charateristics to follow the track. Then the 3-dimensional forces(thrust force, normal force, side force) generated by SLIM direct]y affect the suspension system as the disturbance force. Moreover, in the running condition, the gap length variation in the electromagnets is the same as the SLIM. Therefore, the mutual interaction between the electromagnets and the SLIM is an important problem to realize the smaller gap length. In this paper, the dynamic interaction is analyzed and confir

  • PDF

The Interaction of HIV-1 Inhibitor 3,3',3",3‴-Ethylenetetrakis-4-Hydroxycoumarin with Bovine Serum Albumin at Different pH

  • Dong, Sheying;Yu, Zhuqing;Li, Zhiqin;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2063-2069
    • /
    • 2011
  • We studied the interaction of 3,3',3'',3'''-ethylenetetrakis-4-hydroxycoumarin (EHC) with bovine serum albumin (BSA) in acetate buffer and phosphate buffer with different pH values by UV-vis absorption spectrometry and fluorescence spectrometry respectively. It was found that the pH values of the buffer solutions had an effect on the interaction process. In acetate buffer of pH 4.70, the carbonyl groups in EHC bound to the amino groups in BSA by means of hydrogen bond and van der Waals force, which made the extent of peptide chain in BSA changed. By contrast, in phosphate buffer of pH 7.40, hydrophobic force played a major role in the interaction between EHC and BSA, while the hydrogen bond and van der Waals force were also involved in the interaction. The results of spectrometry indicated that BSA could enhance the fluorescence intensity of EHC by forming a 1:1 EHC-BSA fluorescent complex through static mechanism at pH 4.70 and 7.40 respectively. Furthermore, EHC bound on site 1 in BSA.

Sensorless Force Control with Observer for Multi-functional Upper Limb Rehabilitation Robot (다기능 재활운동을 위한 힘 센서가 없는 상지 재활 로봇의 힘 제어)

  • Choi, Jung Hyun;Oh, Sehoon;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.356-364
    • /
    • 2017
  • This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.