• Title/Summary/Keyword: Interaction Area

Search Result 1,477, Processing Time 0.028 seconds

Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load (平坦氷荷重을 받는 細長形 해양구조물의 動的 거동)

  • Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

Pharmacokinetic Interaction of Vancomycin and Probenecid in Rabbits (반코마이신과 프로베네시드의 약물동태학적 상호작용)

  • Lee, Do-Nil;You, Jae-Sin;Burm, Jin-Pil;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • This study was attempted to investigate the pharmacokinetic interaction of vancomycin (10 mg/kg, i.v.) and probenecid (7.5. 15, and 30 mg/kg, oral) in rabbits. The area under curve (AUC) of plasma vancomycin concentration was significantly increased (p<0.01) in rabbits when the probenecid was coadministrated. Volume of distribution (Vd) was significantly decreased (p<0.05) in rabbits coadministrated with probenecid (15 and 30 mg/kg) and total body clearance (CLt) was decreased significantly (p<0.05. p<0.01) in rabbits coadministrated with probenecid (7.5, 15 and 30 mg/kg). There was significant correlation between AUC and probenecid dose. From the results of this experiment, it is desirable to adjust dosage regimen of vancomycin for reduction of side or toxic effect when the probenecid is coadministered in clinical practice.

  • PDF

Drug Interaction between Sodium Valproate and Phenytoin in Rabbits (발프로산나트륨과 페니토인과의 약물상호작용)

  • Choi, Jun-Shik;You, Jae-Sin;Park, Yong-Chae;Lee, Jin-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 1996
  • This study was attempted to investigate the pharmacokinetic interaction between sodium valproate (4, 8, 16 mg/kg, i.v.) and phenytoin (4 mg/kg, i.v.) in rabbits. The plasma concentration and area under the curve (AUC) of phenytoin were increased significantly (p<0.05, p<0.01) when coadministered with sodium valproate (4, 8, 16 mg/kg) in rabbits. The volume or distribution and total body clearance of phenytoin were decreased significantly (p<0.05, p<0.01) when coadministered with sodium valproate (8, 16 mg/kg) in rabbit. From the results of this experiment, it is desirable that dosage regimen of phenytoin should be adjusted and therapeutic drug monitoring should be performed for reduction of side or toxic effect when phenytoin will be coadministered with sodium valproate in clinical use.

  • PDF

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

Mechanical and hydraulic interaction between braced wall and groundwater (흙막이 벽체와 그라우트 특성에 따른 구조.수리상호 작용)

  • Nam, Teak-Soo;Yoon, Jau-Ung;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1172-1177
    • /
    • 2010
  • For the deep excavation in urban area, the braced-cut method is mainly adopted. In this case, inadequate consideration of ground water level may result in wrong prediction of structural behavior. In this study, the effects of hydraulic interaction between wall and grout were investigated using the finite element method. The maximum stress in case of confined ground water condition is obtained at the final excavation stage in the range of 70~80% of excavation depth. The stress of impermeable case is about 50% larger than that of permeable case. When the relative permeabililty of wall-grout become smaller, the stress is getting bigger. And the stress tends to converge in case of 1/100 or less of the relative permeability.

  • PDF

Performance of Shotcrete Lining due to Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 이용한 터널시공과 지하수의 상호작용으로 인한 라이닝 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.465-474
    • /
    • 2005
  • This paper presents the interaction effect between tunneling and groundwater on tunnel behavior. A parametric study is then conducted on the various tunneling situations frequently encountered in Seoul area using a 3D stress-pore pressure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. It is shown that the ground and lining responses are significantly influenced by the relative permeability between the ground and the lining, and that the circumferential pre-grouting is effective in minimizing the tunnelling and groundwater interaction.

  • PDF

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF

EVALUATION OF GROUNDWATER-STREAM INTERACTION IN AN URBAN STREAM, CHEONGGYECHEON, KOREA

  • Hyun Yun-Jung;Kim Yoon-Young;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.328-331
    • /
    • 2005
  • Cheonggyecheon, covered and Paved with concretes for about more than 50 years, is a losing stream crossing over the downtown of Seoul, Korea. Due to several environmental and economic Problems about the Cheonggyecheon area, the Cheonggyecheon restoration construction has started in 2003. In restoration of Cheonggyecheon, hydraulic barriers are to be installed so as to reduce stream depletion rates for maintaining the stream flow with supplying a certain amount of water. This study evaluates the groundwater-stream interaction by analyzing stream depletion rates of Cheonggyecheon. Results show that significant stream depletion occurs at the up-midstream where the Seoul subway lines are concentrated. Simulation results demonstrate that both horizontal and vertical hydraulic barriers impeding groundwater flow into subway lines are more efficient than a horizontal barrier only for stream depletion rate reduction.

  • PDF

Drug Interaction Between Phenytoin and Diltiazem in Rabbit (딜티아젬과 페니토인과의 약물상호작용)

  • Choi, Jun-Shik;Chang, Il-Hyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 1993
  • Pharmacokinetic drug interaction between phenytoin and diltiazem was investigated following i.v. administration concomitantly to rabbits. Diltiazem was coadministered at doses of 1, 2 and 3 mg/kg, respectively, with phenytoin (5 mg/kg) to rabbits. Plasma concentration and AUC of phenytoin were increased significantly, but volume of distribution and total body clearance were decreased significantly (p<0.05) at doses of 2 mg and 3 mg/kg of diltiazem. From the results of this experiment, it is desirable that dosage regimen of phenytoin should be adjusted and that therapeutic drug monitoring should be practiced for reduction of side or toxic effect when phenytoin should be administered with diltiazem in clinical practice.

  • PDF