• Title/Summary/Keyword: Inter-vehicle Communications

Search Result 22, Processing Time 0.02 seconds

A Study on the Propagation Model according to the Geometric Structures of Roads (도로의 기하구조에 따른 전파모델 연구)

  • Kim, Song-Min
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This study was to simulate it that the sending receiving vehicles run on the general national roads with the one-way two-lanes at 80[km/h] speed. This study was to select 280[m] radius of curvature based on the statistical data with high rate of traffic accidents, 140[m] length of direct roads considering the stopping stadia, 90[m] length of curve, and 8 points of curved roads at 11.25[m] intervals. As a result above, when the distance between the sending and receiving vehicles became more than 111[m], the propagation path of reflected wave by the adjacent vehicles became longer than the propagation path of reflected wave by the left/right reflectors because the number of repeated reflection increased. In this study, the repeated reflection for the propagation's reach to the receiving vehicles was about $1{\sim}2$[times] as it supposed it less than 111[m]. Accordingly, it found out that the propagation path of reflected wave received through the left/right reflectors was about $1{\sim}1.5[m]$ larger than the reflected wave produced by the adjacent vehicles regardless of lanes on which the sending and receiving vehicles were located.

An Enhanced Greedy Message Forwarding Protocol for High Mobile Inter-vehicular Communications (고속으로 이동하는 차량간 통신에서 향상된 탐욕 메시지 포워딩 프로토콜)

  • Jang, Hyun-Hee;Yu, Suk-Dae;Park, Jae-Bok;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.48-58
    • /
    • 2009
  • Geo-graphical routing protocols as GPSR are known to be very suitable and useful for vehicular ad-hoc networks. However, a corresponding node can include some stale neighbor nodes being out of a transmission range, and the stale nodes are pone to get a high priority to be a next relay node in the greedy mode. In addition, some useful redundant information can be eliminated during planarization in the recovery mode. This paper deals with a new recovery mode, the Greedy Border Superiority Routing(GBSR), along with an Adaptive Neighbor list Management(ANM) scheme. Each node can easily treat stale nodes on its neighbor list by means of comparing previous and current Position of a neighbor. When a node meets the local maximum, it makes use of a border superior graph to recover from it. This approach improve the packet delivery ratio while it decreases the time to recover from the local maximum. We evaluate the performance of the proposed methods using a network simulator. The results shown that the proposed protocol reveals much better performance than GPSR protocol. Please Put the of paper here.