• Title/Summary/Keyword: Inter-layer syntax prediction

Search Result 3, Processing Time 0.024 seconds

Inter-layer Texture and Syntax Prediction for Scalable Video Coding

  • Lim, Woong;Choi, Hyomin;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.422-433
    • /
    • 2015
  • In this paper, we demonstrate inter-layer prediction tools for scalable video coders. The proposed scalable coder is designed to support not only spatial, quality and temporal scalabilities, but also view scalability. In addition, we propose quad-tree inter-layer prediction tools to improve coding efficiency at enhancement layers. The proposed inter-layer prediction tools generate texture prediction signal with exploiting texture, syntaxes, and residual information from a reference layer. Furthermore, the tools can be used with inter and intra prediction blocks within a large coding unit. The proposed framework guarantees the rate distortion performance for a base layer because it does not have any compulsion such as constraint intra prediction. According to experiments, the framework supports the spatial scalable functionality with about 18.6%, 18.5% and 25.2% overhead bits against to the single layer coding. The proposed inter-layer prediction tool in multi-loop decoding design framework enables to achieve coding gains of 14.0%, 5.1%, and 12.1% in BD-Bitrate at the enhancement layer, compared to a single layer HEVC for all-intra, low-delay, and random access cases, respectively. For the single-loop decoding design, the proposed quad-tree inter-layer prediction can achieve 14.0%, 3.7%, and 9.8% bit saving.

An Efficient coding Method for Motion Prediction Flag in the Scalable Video Encoding Standard (스케일러블 동영상 부호화 표준에서 움직임 예측 플래그를 위한 효율적인 부호화 방식)

  • Moon, Yong-Ho;Eom, Il-Kyu;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In the scalable video coding standard, inter-layer prediction based on the coding information of the base layer was adopted to increase the coding performance. This prediction tool results in new syntax elements called motion_prediction_flag (mPF) and residul_prediction_flag(rPF), which are carried to notify the motion vector predictor (MVP) and reference block required in the motion compensation of the decoder. In this paper, an efficient coding method for mPF is proposed to enhance coding efficiency of the salable video coding standard. Through an analysis on the transmission of mPF based on the relationship between the MVPs, we discover the conditions where mPF is unnecessary at the decoder and suggest a modified rate-distortion (RD) cost function to make RD optimization more effective. Simulation results show that the proposed method offers BD rate savings of approximately 1.4%, compared with the conventional SVC standard.

Scalable Video Coding Using Large Block and its Performance Analysis (Large Block을 적용한 SVC 부호화 및 성능분석)

  • Park, Un-Ki;Choi, Haechul;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Recently, High-Efficiency Video Coding (HEVC) has been developed as a new video coding standard mainly focusing on the coding of ultra high definition (UHD) videos as the high resolution and high quality videos are getting more popular. Furthermore, the scalable extension of HEVC is being standardized for more efficient provision of HD and UHD services in the communications-broadcasting convergence environment. In this paper, we propose an improved scalable video coding method of H.264/AVC to achieve high coding efficiency particularly for UHD and HD videos. The basic idea is to allow large block size in H.264/AVC SVC, which results in more efficient inter-layer prediction and syntax elements coding. The experimental results show that it achieves an average 4.53% reduction in BD-rate relative to H.264/AVC SVC.