• Title/Summary/Keyword: Inter-color prediction

Search Result 12, Processing Time 0.026 seconds

Enhanced RGB Video Coding Based on Correlation in the Adjacent Block (인접블록의 상관관계에 기반한 RGB video coding 개선 알고리즘)

  • Kim, Yang-Soo;Jeong, Jin-Woo;Choe, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2538-2541
    • /
    • 2009
  • H.264/AVC High 4:4:4 Intra/Predictive profiles supports RGB 4:4:4 sequences for high fidelity video. RGB color planes rather than YCbCr color planes are preferred by high-fidelity video applications such as digital cinema, medical imaging, and UHDTV. Several RGB coding tools have therefore been developed to improve the coding efficiency of RGB video. In this paper, we propose a new method to extract more accurate correlation parameters for inter-plane prediction. We use a searching method to determine the matched macroblock (MB) that has a similar inter-color relation to the current MB. Using this block, we can infer more accurate correlation parameters to predict chroma MB from luma MB. Our proposed inter-plane prediction mode shows an average bits saving of 15.6% and a PSNR increase of 0.99 dB compared with H.264 high4:4:4 intra-profile RGB coding. Furthermore, extensive performance evaluation revealed that our proposed algorithm has better coding efficiency than existing algorithms..

Enhanced Prediction for Low Complexity Near-lossless Compression (낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This paper proposes an enhance prediction for conventional near-lossless coder to effectively lower external memory bandwidth in image processing SoC. First, we utilize an already reconstructed green component as a base of predictor of the other color component because high correlation between RGB color components usually exists. Next, we can improve prediction performance by applying variable block size prediction. Lastly, we use minimum internal memory and improve a temporal prediction performance by using a template dictionary that is sampled in previous frame. Experimental results show that the proposed algorithm shows better performance than the previous works. Natural images have approximately 30% improvement in coding efficiency and CG images have 60% improvement on average.

Enhanced Prediction Algorithm for Near-lossless Image Compression with Low Complexity and Low Latency

  • Son, Ji Deok;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • This paper presents new prediction methods to improve compression performance of the so-called near-lossless RGB-domain image coder, which is designed to effectively decrease the memory bandwidth of a system-on-chip (SoC) for image processing. First, variable block size (VBS)-based intra prediction is employed to eliminate spatial redundancy for the green (G) component of an input image on a pixel-line basis. Second, inter-color prediction (ICP) using spectral correlation is performed to predict the R and B components from the previously reconstructed G-component image. Experimental results show that the proposed algorithm improves coding efficiency by up to 30% compared with an existing algorithm for natural images, and improves coding efficiency with low computational cost by about 50% for computer graphics (CG) images.

Multi-View Color Video and Depth Map Coding based on HEVC (HEVC 기반 다시점 컬러 영상 및 깊이 정보 맵 부호화 방법)

  • Yoo, Sun-Mi;Nam, Jung-Hak;Lim, Woong;Sim, Dong-Gyu;Cheong, Won-Sik;Hur, Nam-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes a method to efficiently encode multi-view color videos and depth maps. The proposed coding method for multi-view color videos and depth maps can improve the coding efficiency by additional inter-view prediction, as well as inter-frame prediction. By means of the proposed method, we achieved the coding gain of approximately 55% for 2-view color videos and approximately 12% for 2-view depth maps. For 3-view case, we found that the proposed system yields 54% of coding gain from outer view color videos and 56% of coding gain from center view color videos, respectively. Moreover, for 3-view depth map case, approximately 11% of coding gain from outer view and 13% of coding gain from center view are obtained with the proposed coder, respectively.

Prediction of successful caudal epidural injection using color Doppler ultrasonography in the paramedian sagittal oblique view of the lumbosacral spine

  • Yoo, Seon Woo;Ki, Min-Jong;Doo, A Ram;Woo, Cheol Jong;Kim, Ye Sull;Son, Ji-Seon
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.339-345
    • /
    • 2021
  • Background: Ultrasound-guided caudal epidural injection (CEI) is limited in that it cannot confirm drug distribution at the target site without fluoroscopy. We hypothesized that visualization of solution flow through the inter-laminar space of the lumbosacral spine using color Doppler ultrasound alone would allow for confirmation of drug distribution. Therefore, we aimed to prospectively evaluate the usefulness of this method by comparing the color Doppler image in the paramedian sagittal oblique view of the lumbosacral spine (LS-PSOV) with the distribution of the contrast medium observed during fluoroscopy. Methods: Sixty-five patients received a 10-mL CEI of solution containing contrast medium under ultrasound guidance. During injection, flow was observed in the LSPSOV using color Doppler ultrasonography, following which it was confirmed using fluoroscopy. The presence of contrast image at L5-S1 on fluoroscopy was defined as "successful CEI." We then calculated prediction accuracy for successful CEI using color Doppler ultrasonography in the LS-PSOV. We also investigated the correlation between the distribution levels measured via color Doppler and fluoroscopy. Results: Prediction accuracy with color Doppler ultrasonography was 96.9%. The sensitivity, specificity, positive predictive value, and negative predictive value were 96.7%, 100%, 100%, and 60.0%, respectively. In 52 of 65 patients (80%), the highest level at which contrast image was observed was the same for both color Doppler ultrasonography and fluoroscopy. Conclusions: Our findings demonstrate that color Doppler ultrasonography in the LS-PSOV is a new method for determining whether a drug solution reaches the lumbosacral region (i.e., the main target level) without the need for fluoroscopy.

An adaptive frequency-selective weighted prediction of residual signal for efficient RGB video compression coding (능률적 RGB 비디오 압축 부호화를 위한 잔여신호의 적응적 주파수-선택 가중 예측 기법)

  • Jeong, Jin-Woo;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.527-539
    • /
    • 2010
  • Most video coding systems use YCbCr color space for their inputs, but RGB space is more preferred in the field of high fidelity video because the compression gain from YCbCr becomes disappeared in the high quality operation region. In order to improve the coding performance of RGB video signal, this paper presents an adaptive frequency-selective weighted prediction algorithm. Based on the sign agreement and the strength of frequency-domain correlation of residual color planes, the proposed scheme adaptively selects the frequency elements as well as the corresponding prediction weights for better utilization of inter-plane correlation of RGB signal. Experimental results showed that the proposed algorithm improves the coding gain of around 13% bitrate reduction, on average, compared to the common mode of 4:4:4 video coding in the state-of-the-art video compression standard, H.264/AVC.

New Prefiltering Methods based on a Histogram Matching to Compensate Luminance and Chrominance Mismatch for Multi-view Video (다시점 비디오의 휘도 및 색차 성분 불일치 보상을 위한 히스토그램 매칭 기반의 전처리 기법)

  • Lee, Dong-Seok;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.127-136
    • /
    • 2010
  • In multi-view video, illumination disharmony between neighboring views can occur on account of different location of each camera and imperfect camera calibration, and so on. Such discrepancy can be the cause of the performance decrease of multi-view video coding by mismatch of inter-view prediction which refer to the pictures obtained from the neighboring views at the same time. In this paper, we propose an efficient histogram-based prefiltering algorithm to compensate mismatches between the luminance and chrominance components in multi-view video for improving its coding efficiency. To compensate illumination variation efficiently, all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching. A Cosited filter that is used for chroma subsampling in many video encoding schemes is applied to each color component prior to histogram matching to improve its performance. The histogram matching is carried out in the RGB color space after color space converting from YCbCr color space. The effective color conversion skill that has respect to direction of edge and range of pixel value in an image is employed in the process. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with other methods.

The Prediction of Interior Luminous Effect Through a Comparison of Shading Algorithms (음영처리기법의 비교를 통한 실내공간 조명효과의 예측)

  • Hong, Sung-De;Park, Hyoun-Jang
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • In Interior design, light is the most important factor in deciding color, texture and illumination level which are the basic factors of spatial design. To apply rendering technologies on prediction of illuminating effect, it is important to understand and analyse the basic properties of the illumination models that are local illumination model and global illumination model. The illumination models in computer graphics express the factors which determine the surface color, texture and light distribution through the reflection. The purpose of this study is to propose the best way of shading algorithm in interior space provided by the computer, based on the experimental analysis that 5 shading methods are applied to the interior space. The results of this study were as followed. 1) Local illumination models that are Lambert shading, Ground shading and Phong shading are not suitable to the prediction of interior illumination effect. 2) Ray tracing that is global illumination model could be adopted to interior illumination effects. Ray tracing is a very versatile algorithm because of the large range of lighting effects it can model. 3) Neither radiality nor ray tracing offers a complete solution for simulating all interior illumination effects. 4) Radiosity excels at rendering diffuse-to-diffuse inter-reflections and ray tracing excels at rendering specular reflections. By merging both shading techniques, that offers the best of both. Using computer technologies to simulate lighting in preliminary design stage which will provide information for designers and occupants to determine the effect of using artificial light sources at each stage of their design process. Further study in illumination analysis, prediction of illumination effect, and lighting calculation is required as computer media expands.

  • PDF

Performance Analysis of Screen Contents Coding Tools to Reduce Inter-Color Component Correlation (색 공간 내 중복 정보 감소를 위한 HEVC 스크린 콘텐츠 부호화 기법 성능 분석)

  • Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.687-696
    • /
    • 2015
  • JCT-VC (Joint Collaborative Team on Video Coding) continues developing HEVC/Screen Content Coding (HEVC/SCC) as an extension for efficiently coding screen content videos, including computer animations, graphics, and electrical documents, based on HEVC/Range extension (HEVC/RExt.). Color space conversion from RGB space being captured from CCD sensors is popular in natural video coding. However, the conversion is often undesired for screen contents because of a significant loss in perceptual quality. Therefore, several coding tools including cross-component prediction (CCP) and in-loop adaptive color space transform (ACST) have been developed for an efficient screen content video coding in order to reduce the redundancies between color spaces while maintaining the original color space. In this paper, we review the two coding tools, i.e., CCP and ACST exploiting the correlation in the RGB color space and conduct the performance analysis of the coding tools. In our simulation results, CCP and ACST provide 11.7% BD-rate saving and 16.4% BD-rate saving, respectively, while the two coding tools provide 18.2% BD-rate saving in total. Following this idea, if the two coding tools are exclusively selected, we provide 93% encoding measurement time with a 0.3% coding loss.

Exploring Fashion Trends Using Network Analysis (사회연결망 분석을 활용한 패션 트렌드 고찰)

  • Park, Jisoo;Lee, Yuri
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.5
    • /
    • pp.611-626
    • /
    • 2014
  • Reading and foreseeing fashion trends is crucial and difficult in the fashion industry due to accelerated and diversified changes in fashion trends. We use network analysis to investigate fashion trends from 2004 to 2013 in order to find the inter-relevance among fashion trends. We extracted words from fashion trend info for women's wear provided by Samsung Design Net, created a 2-mode network of seasons and trend languages, and visualized this network using NodeXl program. Fashion trends repeated a unique pattern during the period. In the first half (2004-2008), retro modern, feminine modern, and ecological modern were dominant trends in consecutive order. The years 2009-2013 witnessed distinctive fashion trends in S/S seasons and in F/W seasons. 11F/W, 12F/W and 13F/W seasons were characterized by artistic creative style. From 2010, natural style dominated S/S seasons. 10S/S and 12S/S seasons were distinguished as a calm natural style that reflected a peaceful and simple life. In 11S/S and 13S/S seasons, soft natural style emerged as a sign of increased importance of inner spirit and natural energy. A seasonal reappearance of trends was observed every two years in S/S seasons that enabled the prediction that 14S/S will see another version of natural style. A macroscopic trend for the last 10 years was represented by the keywords 'modern' and 'natural'. 'Modern' involved the past styles such as 60's, Baroque and the origin of human life. 'Natural' was connected with design elements such as material, silhouette and color. Managerial implications and future study directions are discussed based on the results.