• Title/Summary/Keyword: Inter-blade Damper

Search Result 1, Processing Time 0.015 seconds

Airloads and Structural Loads Analysis of LCH Rotor Using a Loose CFD/CSD Coupling (유체-구조 연계해석을 통한 소형민수헬기(LCH) 공력 및 구조하중 해석)

  • Lee, Da-Woon;Kim, Kiro;Yee, Kwan-Jung;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.489-498
    • /
    • 2019
  • The airloads and structural loads of Light Civil Helicopter (LCH) rotor are investigated using a loose CFD/CSD coupling. The structural dynamics model for LCH 5-bladed rotor cwith elastomeric bearing and inter-bladed damper is constructed using CAMRAD-II. Either isolated rotor or rotor-fuselage model is used to identify the effect of the fuselage on the aeromechanics behavior at a cruise speed of 0.28. The fuselage effect is shown to be marginal on the aeromechanics predictions of LCH rotor, though the effect can be non-negligible for the tail structure due to the prevailing root vortices strengthened by the fuselage upwash. A lifting-line based comprehensive analysis is also conducted to verify the CFD/CSD coupled analysis. The comparison study shows that the comprehensive analysis predictions are generally in good agreements with CFD/CSD coupled results. However, the predicted comprehensive analysis results underestimate peak-to-peak values of blade section airloads and elastic motions due to the limitation of unsteady aerodynamic predictions. Particularly, significant discrepancies appear in the structural loads with apparent phase differences.