• Title/Summary/Keyword: Inter-Satellite Links(ISLS)

Search Result 4, Processing Time 0.015 seconds

Orbit Determination of Korea Regional Navigation Satellite System Using Inter-Satellite Links and Ground Observations

  • Choi, Jungmin;Oh, Hyungjik;Park, Chandeok;Park, Sang-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.327-333
    • /
    • 2017
  • This study presents the orbit determination (OD) of a candidate Korea Regional Navigation Satellite System (KRNSS) using both inter-satellite links (ISLs) and ground observations. The candidate constellation of KRNSS is first introduced. The OD algorithm based on both ISL and ground observation is developed, and consists of three main components: dynamic model for Korean navigation satellites, measurement model for ISLs and ground observations, and the batch least-square filter for estimating OD parameters. As numerical simulations are performed to analyze the OD performances, the present study focuses on investigating the effects of ISL measurements on the OD accuracy of KRNSS. Simulation results show that the use of ISLs can considerably enhance the OD accuracy to one meter (design preference) under certain distributions of ground stations.

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

Traffic Scheduling Algorithms for a SS/TDMA Cluster with Inter-Satellite Links (위성간 링크가 있는 위성군집시스템의 트래픽 스케줄링)

  • Kim, Soo-Hyun;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.21-29
    • /
    • 2003
  • The traffic scheduling problem for a satellite cluster with an arbitrary number of satellites is considered. which is one of the most interesting problems in the satellite communication scheduling area. This problem is to find a time slot assignment maximizing the transponder utilization for a satellite cluster This problem is known to be NP-complete, and several heuristic algorithms have been proposed. In this paper, we suggest new efficient algorithms for this problem, which have less time complexity than the best existing one and provide much better solution quality. Extensive simulation results are reported.

A rerouting-controlled ISL handover protocol for LEO satellite networks

  • Dong, Wei;Wang, Junfeng;Huang, Minhuan;Tang, Jian;Zhou, Hongxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2620-2631
    • /
    • 2012
  • In this paper, a rerouting-controlled ISL (Inter-Satellite link) handover protocol for LEO satellite networks (RCIHP) is proposed. Through topological dynamics and periodic characterization of LEO satellite constellation, the protocol firstly derives the ISL related information such as the moments of ISL handovers and the intervals during which ISLs are closed and cannot be used to forward packet. The information, combined with satellite link load status, is then been utilized during packet forwarding process. The protocol makes a forwarding decision on a per packet basis and only routes packets to living and non-congested satellite links. Thus RCIHP avoids periodic rerouting that occurs in traditional routing protocols and makes it totally unnecessary. Simulation studies show that RCIHP has a good performance in terms of packet dropped possibility and end-to-end delay.