• 제목/요약/키워드: Intensity of rainfall

검색결과 758건 처리시간 0.027초

하수관거 통수능 해석을 위한 Huff 모형과 ABM 법의 적용성 분석 (Applicability of Huff Model & ABM Method for Discharge Capacity of Sewer Pipe)

  • 현인환;전승희;김두일
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.229-237
    • /
    • 2022
  • The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.

지상우량계와 기상레이더 강우강도의 비교연구 (A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar)

  • 류찬수;강인숙;임재환
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

춘천시에서 발생한 산사태 유발강우의 특성 분석 (Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province)

  • 김상욱;백경오
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

수문지역별 최적확률강우강도추정모형의 재정립 -영.호남 지역을 중심으로 - (Estimation Model for Optimum Probabilistic Rainfall Intensity on Hydrological Area - With Special Reference to Chonnam, Buk and Kyoungnam, Buk Area -)

  • 엄병헌;박종화;한국헌
    • 한국농공학회지
    • /
    • 제38권2호
    • /
    • pp.108-122
    • /
    • 1996
  • This study was to introduced estimation model for optimum probabilistic rainfall intensity on hydrological area. Originally, probabilistic rainfall intensity formula have been characterized different coefficient of formula and model following watersheds. But recently in korea rainfall intensity formula does not use unionize applyment standard between administration and district. And mingle use planning formula with not assumption model. Following the number of year hydrological duration adjust areal index. But, with adjusting formula applyment was without systematic conduct. This study perceive the point as following : 1) Use method of excess probability of Iwai to calculate survey rainfall intensity value. 2) And, use method of least squares to calculate areal coefficient for a unit of 157 rain gauge station. And, use areal coefficient was introduced new probabilistic rainfall intensity formula for each rain gauge station. 3) And, use new probabilistic rainfall intensity formula to adjust a unit of fourteen duration-a unit of fifteen year probabilistic rainfall intensity. 4) The above survey value compared with adjustment value. And use three theory of error(absolute mean error, squares mean error, relative error ratio) to choice optimum probabilistic rainfall intensity formula for a unit of 157 rain gauge station.

  • PDF

레이더에 의한 개선된 강우강도와 면적 강우량의 실시간 추정 (Improvement of Radar Rainfall Intensity and Real-time Estimation of Areal Rainfall)

  • 정성화;김경익;김광섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.643-646
    • /
    • 2006
  • An operational calibration is applied to improve radar rainfall intensity using rainfall obtained from rain gauge. The method is applied under the assumption of the temporal continuity of rainfall, the rainfall intensity from rain gauge is linearly related to that from radar. The method is applied to the cases of typhoon and rain band using the reflectivity of CAPPI at 1.5km obtained from Jindo radar. The CAPPI is obtained by bilinear interpolation. For the two cases, the rainfall intensities obtained by operational calibration are very consistent with the ones by the rain gauges. The present study shows that the correlation between the rainfall intensity by operational calibration and rain gauges is better than the one between the rainfall intensity by M-P relationship and rain gauges. The correlation coefficients between the total rainfall intensity obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.99 and 0.97, respectively. Areal rainfalls are estimated using the field of calibration factor interpolated by Barnes objective analysis. The method applied here shows an improvement in the areal rainfall estimation. For the cases of typhoon and rain band, the correlation between the areal rainfall by operational calibration and rain gauges is better than the one between the area rainfall by M-P relationship and rain gauges. The correlation coefficients between the areal rainfall obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.97 and 0.84, respectively. The present study suggests that the operational calibration is very useful for the real-time estimation of rainfall intensity and areal rainfall.

  • PDF

강우강도를 고려한 도달시간 산정식 (The Time of Concentration Considering the Rainfall Intensity)

  • 유동훈;김종희;이민호;이상호
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.591-599
    • /
    • 2011
  • 도달시간 산정식에서 강우강도는 고려되어야 할 매우 중요한 요소이지만 일반적으로 강우강도식의 복잡함 때문에 도달시간 산정에서 강우강도를 충분히 고려하지 못하고 있는 실정이다. 본 연구에서는 도달시간 계산의 정확성을 높이기 위하여 강우강도와 재현기간을 도달시간 산정식의 유도에 포함시켰다. 강우강도식으로는 Sherman형 식을 사용하였고, 건설교통부에서 발행한 확률강우량도에서 독취한 강우강도 값으로 수식의 지역상수를 추정하였다. 그리고 확률강우량을 간결하게 계산하기 위하여 Sherman형 식의 지역상수를 등치선도로 나타냈다. 기존의 연구에서는 일반형 강우강도식을 대입하여 반복계산으로 도달시간을 산정하였지만, 본 연구에서는 Sherman형 강우강도식을 도달시간 수식에 대입함으로써 반복계산이 필요 없는 간단한 도달시간 식이 유도되었다. 연구 결과로부터, 도달시간 계산에 강우강도의 영향을 반영하기 위하여 Sherman형 식의 사용을 추천한다. 그리고 재현기간과 우리나라에서 위치가 정해지면, 강우강도식의 지역상수를 간편하게 추정할 수 있고, 강우강도가 고려된 도달시간을 계산할 수 있다.

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.

공주지역의 강우강도-지속기간-빈도곡선 개발 (Development of the Intensity-Duration-Frequency Curve at Kong-Ju Area)

  • 정상만;박석재;유찬종
    • 한국방재학회 논문집
    • /
    • 제2권2호
    • /
    • pp.85-93
    • /
    • 2002
  • 본 연구는 공주지역의 한국확률강우량도를 이용하여 확률강우량을 산정한 후 강우강도-지속기간-빈도곡선식을 개발하는데 목적이 있다. 공주지역의 재현기간별 확률강우강도식의 산정결과 강우강도식은 장 단기간으로 구분하는 것이 타당하였고, 강우강도식의 신뢰성을 설명하는 장기간의 결정계수($R^2$)는 $0.9924{\sim}0.9971$로써 매우 높게 나타나고 있기 때문에 본 연구에서 제시한 재현기간별 확률강우강도식이 상당히 의미 있는 것으로 사려된다. 공주지역의 확률강우강도식은 최소자승법을 사용하여 Talbot형, Sherman형, Japanese형, 일반형의 4가지로 분석한 결과 본 연구에서 적용한 Sherman형이 가장 적합한 것으로 나타났다. 따라서 공주지역의 수공구조물 설계시 본 연구에서 산정된 재현기간별 확률강우강도식을 이용함으로써 보다 정도가 높은 설계를 할 수 있으리라 판단된다.

수치해석에 의한 강우강도와 사면 안정성의 상관성 분석 (Relationship between Rainfall Intensity and Slope Stability based on Numerical Analysis)

  • 이민석;김교원
    • 지질공학
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2009
  • 본 연구는 수치해석을 이용하여 강우강도와 사면 안정성의 상관성을 파악하기 위하여 수행되었다. 지난 36년간의 기상청 자료를 조사하여 10분, 1시간, 일 최다강수량이 각각 28 mm, 70 mm, 271 mm로 집계되었다. 그때 침투류 해석은 프로그램 SLEEP/W을 이용하여 사면의 지하수위를 획득하기 위해 수행되었고, 안정성 분석은 프로그램 SLOPE/W을 이용하여 시간 단계별로 수행되었다. 10분 강수량 28 mm일 경우 2시간, 1시간 강수량 70 mm일 경우 7시간, 1일 강수량 271 mm일 경우 72시간에 사면내의 지하수위가 포화상태에 도달하였다. 10분 강우강도가 28 mm일 경우, 누적강우량 196 mm 일 때, 안전율이 1.0 이하가 되었으며, 10분 강우강도가 13 mm, 1.9 mm 일 경우에는 누적강우량이 각각 468 mm, 820 mm 일 때, 안전율이 1.0 이하가 되었다. 이 결과는 누적강우량보다는 강우강도가 사면안정성에 더 큰 영향을 미치고 있다는 것을 시사한다.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.