• 제목/요약/키워드: Intensity of Swirl

검색결과 141건 처리시간 0.031초

연료다단 연소기의 NOx 발생특성에 관한 실험적 연구 (An Experimental Study on the NOx Formation of Fuel Staged Combustor)

  • 정진도;안국영;한지웅
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.73-79
    • /
    • 2003
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 ㎿) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

연료다단 연소기의 NOx 발생특성에 관한 실험적 연구 (The experimental study on the NOx formation of fuel staged combustor)

  • 한지웅;안국영;김한석;정진도
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.163-171
    • /
    • 2001
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot Dame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by ${>}$70% in accordance with operating conditions.

  • PDF

미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향 (Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner)

  • 신민호;성연모;최민성;이광수;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

이중공기공급 이유체노즐의 선회각 변화에 따른 분무특성 (Effect of Swirl Angle on the Atomization Characteristics in Two-Fluid Nozzle with Dual Air Supplying System)

  • 김의수;강신명;최윤준;김덕진;이지근;노병준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.54-60
    • /
    • 2008
  • The atomization characteristics of the dual air supplying twin-fluid nozzle were investigated experimentally using PIV and PDA systems. The two-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air and the main nozzle to produce the spray. The main nozzle has the swirl tip with four equally spaced tangential slots, which give the injecting fluid an angular momentum. The angle of the swirl tip varied with 0$^{\circ}$ 30$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$, and the ratios of carrier air to assist air and ALR(total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the mean velocity, turbulent intensity and SMD distributions of the sprays were measured using PDA system. As the results, the mean axial velocity at the spray centerline decrease with the increase of the swirl angle. The turbulent intensities of the axial and radial velocity were increased with the increase of the swirl angle. The mean SMD (Sauter mean diameter) of the radial direction along the axial distance shows the lowest value at the swirl angle of 60$^{\circ}$.

  • PDF

스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향 (Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket)

  • 김정은;이설하;김지은;김지혜;유민정;한송이;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.672-674
    • /
    • 2017
  • 하이브리드 로켓의 연소 실험 과정에서 저 주파수 대역이 증폭하는 연소 불안정이 관찰되었다. 반면, 터빈 연소기에서는 혼합 특성 향상을 통하여 연소의 안정성을 얻기 위해 스월 유동을 사용한다. 본 연구에서는 하이브리드 로켓의 연소 불안정을 감소시키기 위하여 스월 인젝터를 사용하여 실험하였다. 그 결과, 하이브리드 로켓에서 스월 인젝터를 통하여 산화제를 주입한 경우 연소 불안정이 감소하였다. 산화제의 스월 유동의 변화는 연소실 내부의 난류유동 특성을 변화시키며 그 결과, 연소 불안정에 영향을 미친다. 따라서 스월 각도 변화를 통하여 스월 넘버 변화를 변화시킴으로써 유동 특성 변화에 대해 알아보았다. 유동 특성 변화가 주파수 특성에 미치는 영향, 압력진동과 연소진동의 상관관계에 대해 확인하였다.

  • PDF

스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절 (Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert)

  • 현원정;이창진
    • 한국항공우주학회지
    • /
    • 제49권2호
    • /
    • pp.139-146
    • /
    • 2021
  • 하이브리드 로켓 연소에서 산화제 스월 분사는 회전방향 속도성분이 경계층 유동에 영향을 미쳐 연소안정화에 기여한다. 그러나 스월 강도가 증가할수록 연소성능을 과도하게 변화시키는 문제점이 나타난다. 따라서 참고문헌[7]의 삽입연료와 함께 사용하여 연소성능 변화를 최소화 하면서 연소불안정 억제를 시도하였다. 이를 위해, 일련의 실험을 계획하여 스월 강도와 삽입연료 위치를 변화하며 연소불안정의 발생과 연소성능 변화를 관찰하였다. 실험결과, 스월 각 6°, 삽입연료 위치 310 mm 조합에서 연소불안정이 억제되었으며 연소압력, O/F 비 그리고 연료 후퇴율 등의 변화가 최소인 것으로 확인하였다. 또한 고주파수 대역의 압력진동(p')와 열방출진동(q')의 위상차가 π/2로 음의 결합을 형성하도록 연소조건을 유지하는 것이 저주파수 연소불안정 발생을 억제하는 필요충분조건임을 재확인하였다.

상호상관 PIV기법을 이용한 엔진 실린더내 난류의 공간적 해석 (A SPACIAL ANALYSIS OF IN-CYLINDER TURBULENCE FLOW IN SI ENGINE USING CROSS CORRELATION PIV)

  • 정구섭;정용욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3038-3043
    • /
    • 2008
  • Tumble or swirl flow is used adequately to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the late time of compression stroke. However, since in-cylinder flow is a kind of transient state with rapid flow variation, that is, non-steady state flow, swirl or tumble flow has not been analyzed sufficiently and not been recognized whether they are available for combustion theoretically yet. In the investigation of intake turbulent characteristics using PIV method, different flow characteristics were showed according to SCV figures. SCV installed engine had higher vorticity, turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation component increased and flow energy was conserved effectively through the experiment.

  • PDF

EXPERIMENTAL STUDY ON TURBULENT SWIRLING FLOW IN A CYLINDRICAL ANNULI BY USING THE PIV TECHNIQUE

  • Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.17-22
    • /
    • 2004
  • An experimental investigation was conducted to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed using a flow visualization technique using smoke and dye liquid for Re=60,000-80,000. Using the two-dimensional Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulence intensity in water with swirl for Re=20,000, 30,000, and 40,000 along longitudinal sections. There were neutral points for equal axial velocity at y/(R-r)=0.7-0.75, and the highest axial velocity was recorded near y/(R-r)=0.9. Negative axial velocity was observed near the convex tube along X/(D-d)=3.0-18.0 for Re=20,000.

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.