• 제목/요약/키워드: Intensity measures

검색결과 399건 처리시간 0.024초

A novel proficient and sufficient intensity measure for probabilistic analysis of skewed highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1177-1202
    • /
    • 2015
  • In this paper, a new intensity measure of earthquakes for probabilistic seismic analysis is presented for skewed highway bridges. Three different cases of skewed bridges with different skew angles ($0^{\circ}$, $30^{\circ}$ and $45^{\circ}$) are considered. Well-known intensity measures (e.g., PGA, $S_a$) are evaluated and critically discussed based on sensitivity analysis: efficiency, practically, proficiency and sufficiency of intensity measures are considered in detail. The analyses demonstrated that the intensity measures have to take into account structural acceleration on a wide range of periods so that a new seismic intensity measure is proposed showing that it has less dispersion compared to others. Since the proposed intensity represents the average value of the $S_a$ (between a lower and upper structural period) it has been called Averaged Spectral Acceleration (ASA). Based on performed incremental dynamic analysis (IDA), the seismic analytical fragility curves of typical skewed highway bridges have been evaluated for different states of damage controlling the low dispersion of the ASA index as well as its proficiency and sufficiency.

Seismic performance of skewed highway bridges using analytical fragility function methodology

  • Bayat, M.;Daneshjoo, F.
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.723-740
    • /
    • 2015
  • In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.

Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Kia, Mehdi;Cao, Maosen
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.183-189
    • /
    • 2019
  • In this study, it has been tried to prepare an analytical fragility curves for isolated straight continues highway bridges by considering different spectral intensity measures. A three-span concrete isolated bridge has been selected and the seismic performance of the bridge has been improved by Lead Rubber Bearing (LRB). Incremental Dynamic Analysis (IDA) is applied to the bridge in longitudinal direction. A suite of 14 earthquake ground motions from medium to sever motions are scaled and used for nonlinear time history analysis. Fragility function considers the relationship of earthquake intensity measures (IM) and probability of exceeding certain Damage State (DS). A full three dimensional finite element model of the isolated bridge has been developed and analyzed. A wide range of different intensity measures are selected and the optimal intensity measure which has the less dispersion is proposed.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Impact of the masonry infills on the correlation between seismic intensity measures and damage of R/C buildings

  • Kostinakis, Konstantinos G.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.55-71
    • /
    • 2018
  • This paper investigates the role of the masonry infills on the correlation between widely used earthquake Intensity Measures (IMs) and the damage state of 3D R/C buildings taking into account the orientation of the seismic input. For the purposes of the investigation an extensive parametric study is conducted using 60 R/C buildings with different heights, structural systems and masonry infills' distributions. The results reveal that the correlation between the IMs and the seismic damage can be strongly affected by the masonry infills' distribution, depending on the special characteristics of the structural system, the number of stories and the incident angle.

Bilateral Trade and Productivity Differences in a Ricardo-Cournot Model

  • Song, E. Young
    • Journal of Korea Trade
    • /
    • 제25권4호
    • /
    • pp.88-107
    • /
    • 2021
  • Purpose - Using a model that highlights Ricardian comparative advantage and Cournot competition, I derive theoretical predictions on how bilateral measures of trade intensity, specialization, and intra-industry are interrelated, and how Ricardian productivity differences affect these measures. We test the predictions using trade and production data, and confirm them. Design/methodology - A simple two-country general equilibrium model is constructed to derive theory-based bilateral indexes. We then test the relationships among them using panel data for 35 countries and 14 industries between 1996 and 2008. Findings - Bilateral trade intensity is increasing in specialization, as in the classical trade theory, and in intra-industry trade, as in the new trade theory. However, productivity differences positively affect specialization, and negatively affect intra-industry trade. These effects cancel each other; thus productivity differences have little impact on trade intensity. Originality/value - This paper provides a comprehensive conceptual framework for understanding the relationship among trade intensity, specialization, intra-industry trade, and productivity differences. We derive theory-consistent measures of specialization, intra-industry trade, and productivity differences. Moreover, we reevaluate the empirical relevance of these variables for the study of gravity equations. This paper is also an effort to capture oligopolistic competition in a general equilibrium framework, interests in which recently resurged.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Prosodic Modifications of the Internal Phonetic Structure of Monosyllabic CVC Words in Conversational Speech

  • Mo, Yoonsook
    • 말소리와 음성과학
    • /
    • 제5권1호
    • /
    • pp.99-108
    • /
    • 2013
  • Previous laboratory studies have shown that prosodic structures are encoded in the modulations of phonetic patterns of speech including suprasegmental as well as segmental features. In particular, effects of prosodic context on duration and intensity of syllables and words have been widely reported. Drawing on prosodically annotated large-scale speech data from the Buckeye corpus of conversational speech of American English, the current study attempted to examine whether and how prosodic prominence and phrase boundary of everyday conversational speech, as determined by a large group of ordinary listeners, are related to the phonetic realization of duration and intensity. The results showed that the patterns of word durations and intensities are influenced by prosodic structure. Closer examinations revealed, however, that the effects of prosodic prominence are not the same as those of prosodic phrase boundary. With regard to intensity measures, the results revealed the systematic changes in the patterns of overall RMS intensity near prosodic phrase boundary but the prominence effects are restricted to the nucleus. In terms of duration measures, both prosodic prominence and phrase boundary are the most closely related to the lengthening of the nucleus. Yet, prosodic prominence is more closely related to the lengthening of the onset while phrase boundary lengthens the coda duration more. The findings from the current study suggest that the phonetic realizations of prosodic prominence are different from those of prosodic phrase boundary, and speakers signal different prosodic structures through deliberate modulations of the internal phonetic structure of words and listeners attend to such phonetic variations.

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.443-452
    • /
    • 2018
  • In this paper the new intensity measures (IMs) for probabilistic seismic analysis of RC high-rise buildings with core wall structural system are proposed. The existing IMs are analysed and the new optimal ones are presented. The newly proposed IMs are based on the existing ones which: 1) comprise a wider range of frequency velocity spectrum content and 2) are defined as the integral along the velocity spectrum. In analysis characteristics of optimal IMs such as: efficiency, practicality, proficiency and sufficiency are considered. As prototype buildings, RC high-rise buildings with core wall structural system and with characteristic heights: 20-storey, 30-storey and 40-storey, are selected. The non-linear 3D models of the prototype buildings are constructed. 720 non-linear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes, distances to source and various soil types. Statistical processing of results and detailed regression analysis are performed and appropriate demand models which relate IMs to demand measures (DMs), are obtained. The conducted analysis has shown that the newly proposed IMs can efficiently predict the DMs with minimum dispersion and satisfactory practicality as compared to the other commonly used IMs (e.g., PGA and $S_a(T_1)$). The newly proposed IMs overcome difficulties in calculating of integral along the velocity spectrum and present adequate replacement for IMs which comprise a wider range of frequency velocity spectrum content.