• 제목/요약/키워드: Intensity Modulation Radiation Therapy

검색결과 15건 처리시간 0.022초

선량강도 조절법을 이용한 방사선치료에서 총선량에 관한 고찰 (A Study of Total Dose in Intensity Modulation Radiation Therapy)

  • 김성규
    • 한국의학물리학회지:의학물리
    • /
    • 제11권1호
    • /
    • pp.85-90
    • /
    • 2000
  • 방사선치료에서 치료의 효과는 총선량, 치료회수, 1회 조사선량 등에 의해서 결정된다. 선량강도조절법을 사용하여 방사선치료를 행할 때 치료회수나 1회 조사선량을 고려하여 총선량에 미치는 효과를 살펴보고자 한다. 방사선치료의 목적은 암조직에는 충분한 선량을 조사하면서 주위 정상 조직에는 최소한의 선량을 조사되게 하여 치료성적의 향상으로 암환자의 생존율과 삶의 질을 높이는데 목적이 있다. 이러한 문제를 해결하기 위하여 많은 연구자들이 여러 가지 방법으로 해결하고자 노력한 결과 CT의 영상을 치료계획에 이용할 수 있게 되어 three dimensional conformal radiation therapy(3DCRT)를 개발하였다. 선량강도조절법을 시행하여 총선량을 75, 80, 85, 90Gy를 조사할 때, 처음부터 선량강도조절법을 사용하여 치료하는 경우와 일차적으로 45Gy를 조사하고 boost를 조사할 때 나머지 선량을 선량강도조절 법으로 사용하는 것을 TDF 환산법을 사용하여 비교하였다. 처음부터 선량강도조절법으로 치료할 경우에는 총선량에서 약 12.5 - 15 Gy 정도 감해서 조사하여야 하는 것으로 나타났다.

  • PDF

선량강도 조절법을 이용한 방사선치료 (Intensity Modulation in Radiation Therapy)

  • 김성규;김명세
    • 한국의학물리학회지:의학물리
    • /
    • 제8권2호
    • /
    • pp.27-34
    • /
    • 1997
  • 방사선치료에서 three dimensional conformal radiation therapy (3DCRT) 에 접근하는 방법으로 조사하는 방향에 따라 선량의 강도를 조절함으로서 암조직에만 집중적으로 선량을 조사하며 주위 정상조직에는 최소의 선량이 조사되도록 하는 방법으로 1990년대부터 Memorial Sloan-Kettering Cancer Center를 중심으로 연구되었다. 암조직의 치료부피를 최적화하기 위하여 암조직의 모양에 따라 선량분포곡선이 이루는 치료용적이 종양용적과 같아야 한다. 이러한 3DCRT는 암조직에 집중적으로 선량을 조사할 수 있어서 중요장기들의 한계선량을 유지하면서 암조직에 조사되는 선량을 20% 정도 증가시킬수 있다. 방사선치료의 궁극적인 목적이 종양부위에 균등한 치유선량이 도달되게하고 병변 부위의 정상조직의 손상을 최소가 되게 하는 것이며, 이러한 수행을 위하여 CT planning 등을 이용하여 치료계획을 수립하여 치료용적과 종양용적을 거의 같게 할 수 있다. 본 연구에서는 조사하는 부위에서 선량의 강도를 조절하여 암조직의 치료용적을 최적화하는 3DCRT를 얻는 것을 목적으로 폐암환자에서 강도 조절법을 사용한 치료계획에서 일반적인 치료계획을 시행한 경우를 비교하면 종양용적에 접근한 치료계획과 정상조직에 대한 선량 감소를 보여주고 있으며, 직장암 환자에서도 두 치료계획에서 선량분포가 잘 비교가 됨을 볼 수 있다.

  • PDF

Quantifications of Intensity-Modulated Radiation Therapy Plan Complexities in Magnetic Resonance Image Guided Radiotherapy Systems

  • Chun, Minsoo;Kwon, Ohyun;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • 제46권2호
    • /
    • pp.48-57
    • /
    • 2021
  • Background: In this study, the complexities of step-and-shoot intensity-modulated radiation therapy (IMRT) plans in magnetic resonance-guided radiation therapy systems were evaluated. Materials and Methods: Overall, 194 verification plans from the abdomen, prostate, and breast sites were collected using a 60Co-based ViewRay radiotherapy system (ViewRay Inc., Cleveland, OH, USA). Various plan complexity metrics (PCMs) were calculated for each verification plan, including the modulation complexity score (MCS), plan-averaged beam area (PA), plan-averaged beam irregularity, plan-averaged edge (PE), plan-averaged beam modulation, number of segments, average area among all segments (AA/Seg), and total beam-on time (TBT). The plan deliverability was quantified in terms of gamma passing rates (GPRs) with a 1 mm/2% criterion, and the Pearson correlation coefficients between GPRs and various PCMs were analyzed. Results and Discussion: For the abdomen, prostate, and breast groups, the average GPRs with the 1 mm/2% criterion were 77.8 ± 6.0%, 79.8 ± 4.9%, and 84.7 ± 7.3%; PCMs were 0.263, 0.271, and 0.386; PAs were 15.001, 18.779, and 35.683; PEs were 1.575, 1.444, and 1.028; AA/Segs were 15.37, 19.89, and 36.64; and TBTs were 18.86, 19.33, and 5.91 minutes, respectively. The various PCMs, i.e., MCS, PA, PE, AA/Seg, and TBT, showed statistically significant Pearson correlation coefficients of 0.416, 0.627, -0.541, 0.635, and -0.397, respectively, with GPRs. Conclusion: The area-related metrics exhibited strong correlations with GPRs. Moreover, the AA/Seg metric can be used to estimate the IMRT plan accuracy without beam delivery in the 60Co-based ViewRay radiotherapy system.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Reirradiation of head and neck cancer in the era of intensity-modulated radiotherapy: patient selection, practical aspects, and current evidence

  • Kim, Yeon Sil
    • Radiation Oncology Journal
    • /
    • 제35권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Locoregional failure is the most frequent pattern of failure in locally advanced head and neck cancer patients and it leads to death in most of the patients. Second primary tumors occurring in the other head and neck region reach up to almost 40% of long-term survivors. Recommended and preferred retreatment option in operable patients is salvage surgical resection, reporting a 5-year overall survival of up to 40%. However, because of tumor location, extent, and underlying comorbidities, salvage surgery is often limited and compromised by incomplete resection. Reirradiation with or without combined chemotherapy is an appropriate option for unresectable recurrence. Reirradiation is carefully considered with a case-by-case basis. Reirradiation protocol enrollment is highly encouraged prior to committing patient to an aggressive therapy. Radiation doses greater than 60 Gy are usually recommended for successful salvage. Despite recent technical improvement in intensity-modulated radiotherapy (IMRT), the use of concurrent chemotherapy, and the emergence of molecularly targeted agents, careful patient selection remain as the most paramount factor in reirradiation. Tumors that recur or persist despite aggressive prior chemoradiation therapy imply the presence of chemoradio-resistant clonogens. Treatment protocols that combine novel targeted radiosensitizing agents with conformal high precision radiation are required to overcome the resistance while minimizing toxicity. Recent large number of data showed that IMRT may provide better locoregional control with acceptable acute or chronic morbidities. However, additional prospective studies are required before a definitive conclusion can be drawn on safety and effectiveness of IMRT.

Progress on Proton Therapy Facility Project in National Cancer Center, Korea

  • Kim, Jong-Won;Park, Sung-Yong;Park, Dahl;Kim, Dae-Yong;Shin, Kyung-Hwan;Cho, Kwan-Ho
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.180-182
    • /
    • 2002
  • A Proton Therapy Center was established this year in National Cancer Center, Korea. We chose IBA of Belgium as the vendor of the equipment package. A 230 MeV fixed-energy cyclotron will deliver proton beams into two gantry rooms, one horizontal beam room, and one experimental station. The building for the equipment is currently under design with a special emphasis on radiation shielding. Installation of equipments is expected to begin in September next year starting with the first gantry, and the acceptance test will be performed about a year later. To generate therapeutic radiation fields the wobbling method will be a main treatment mode for the first gantry. A pencil beam scanning system on the other hand will be equipped for the second gantry relying on the availability at the time of installation. The beam scanning with intensity modulation adapted will be a most advanced form in radiation therapy known as IMPT. Some details on the project progress, scope of the system, and design of building are described.

  • PDF

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Dose Verification of Intensity Modulated Radiation Therapy with Beam Intensity Scanner System

  • Vahc, Young-Woo;Park, Kwangyl;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.248-251
    • /
    • 2002
  • The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Gradient based algorithm을 이용한 multiple slice IMRT optimization (IMRT optimization on multiple slice using gradient based algorithm)

  • 이병용;조병철;이석;정원균;안승도;최은경;김종훈;장혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제9권4호
    • /
    • pp.201-206
    • /
    • 1998
  • 세기변조방사선치료 (Intensity Modulation Radiation Therapy; IMRT) 의 치료계획 목적으로 사용하기 위한 선량최적화 방법을 Gradient based algorithm을 이용하여 개발하였다. 환자의 치료 관심 부위를 포함하는 약 10-30 CT 단면에 대하여 각 단면 별로 선량최적화를 실시하였고, 장기별로 최대 허용선량을 지정하였으며, 표적의 선량은 100$\pm$5 %로 제한하였다. beamlet의 크기는 8$\times$8 $cm^2$으로 제한하였고, beam size가 크지 않으므로 beam diverge는 고려하지 않았다. beamlet 하나가 만드는 선량분포를 미리 계산한 후, 선량중첩방식으로 전체 선량분포를 계산하였다. 고정된 동일평면에 대하여 5방향에서 입사하는 빔에 대한 최적화를 실시하였으며, 그 효용성을 비교하기 위해, 1, 3, 5, 7, 9 방향에 입사하는 빔과 최적화지수를 구하였다. 선량최적화에 소요되는 시간은 대체로 slice 수에 비례하였으며, 계산시간과 최적화지수를 비교할 때 빔의 개수가 3-7개 일 때 가장 적합하였다. 다중단면에 대한 선량최적화를 beam divergence를 고려하지 않을 때, 단일 단면에 대한 선량최적화를 반복 시행함으로써 얻을 수 있었다. 선량최적화의 결과가 선량중심의 위치에 따라 민감하게 변하는 경우가 발생하였으며, 이를 개선하기 위해서는 선량중심의 최적화가 개발될 필요성이 있었다.

  • PDF

Treatment outcome of localized prostate cancer by 70 Gy hypofractionated intensity-modulated radiotherapy with a customized rectal balloon

  • Kim, Hyunjung;Kim, Jun Won;Hong, Sung Joon;Rha, Koon Ho;Lee, Chang-Geol;Yang, Seung Choul;Choi, Young Deuk;Suh, Chang-Ok;Cho, Jaeho
    • Radiation Oncology Journal
    • /
    • 제32권3호
    • /
    • pp.187-197
    • /
    • 2014
  • Purpose: We aimed to analyze the treatment outcome and long-term toxicity of 70 Gy hypofractionated intensity-modulated radiotherapy (IMRT) for localized prostate cancer using a customized rectal balloon. Materials and Methods: We reviewed medical records of 86 prostate cancer patients who received curative radiotherapy between January 2004 and December 2011 at our institution. Patients were designated as low (12.8%), intermediate (20.9%), or high risk (66.3%). Thirty patients received a total dose of 70 Gy in 28 fractions over 5 weeks via IMRT (the Hypo-IMRT group); 56 received 70.2 Gy in 39 fractions over 7 weeks via 3-dimensional conformal radiotherapy (the CF-3DRT group, which served as a reference for comparison). A customized rectal balloon was placed in Hypo-IMRT group throughout the entire radiotherapy course. Androgen deprivation therapy was administered to 47 patients (Hypo-IMRT group, 17; CF-3DRT group, 30). Late genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated according to the Radiation Therapy Oncology Group criteria. Results: The median follow-up period was 74.4 months (range, 18.8 to 125.9 months). The 5-year actuarial biochemical relapse-free survival rates for low-, intermediate-, and high-risk patients were 100%, 100%, and 88.5%, respectively, for the Hypo-IMRT group and 80%, 77.8%, and 63.6%, respectively, for the CF-3DRT group (p < 0.046). No patient presented with acute or late GU toxicity ${\geq}$grade 3. Late grade 3 GI toxicity occurred in 2 patients (3.6%) in the CF-3DRT group and 1 patient (3.3%) in the Hypo-IMRT group. Conclusion: Hypo-IMRT with a customized rectal balloon resulted in excellent biochemical control rates with minimal toxicity in localized prostate cancer patients.