• 제목/요약/키워드: Intenal Combustion Engine

검색결과 2건 처리시간 0.015초

내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발 (Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine)

  • 배종욱
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

월쉬변환에 의한 가솔린엔진 실화검출에 관한 연구 (A Study on the Detection of Misfire in Gasoline Engine via Walsh Transform)

  • 이태표;김종부;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권6호
    • /
    • pp.299-306
    • /
    • 2000
  • The primary cause of air pollution by vehicles is imperfect combustion of fuel. One of the most usual causes of this imperfect combustion is the misfire in IC(Intenal Combustion) engine. Recently it is obligated for an ECU to monitor the emission level and warn the driver in case of exceeding specified emission standards. Therefore, in order to comply with this OBD-II regulations, car makers are investing a considerable amount into technology which would enable the detection of misfire and the particular cylinder in which misfire is taking place. So far, it has been able to detect misfire using engine speed, which can be obtained crank angle. However, such a method posed a problem in analyzing at high speed and in recognizing the misfire from the load impact at bumpy road. In this paper, misfire detection is made possible by simple arithmetic using WDFT, especially at high engine speed. In addition, the moving window method of a Walsh function is applied to determine the cylinders under misfire in case of multiple misfires. An actual experiment was conducted to prove that WDFT is applicable to effective in computation speed and to same result in misfire detection and cylinder determination at idle, part load and bumpy road conditions.

  • PDF