• Title/Summary/Keyword: Intelligent vehicles

Search Result 770, Processing Time 0.029 seconds

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Study of Estimation Model for Wartime Stockpile Requirement of Intelligent Ammunition against Enemy Armored Vehicles (장갑차량 공격용 지능형 포탄의 전시 소요량 산정 모형에 관한 연구)

  • Cho, Hong-Yong;Chung, Byeong-Hee
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.143-162
    • /
    • 2008
  • This paper aims to formulate the method of estimating the wartime stockpile requirement of 155mm self-propelled artillery including intelligent ammunition for armored vehicles, currently being developed. The usual method of utilizing war-game simulation results in considerable margins in expected occupancy ratio between ground forces and air forces for each weapon system for armored vehicles. Also, the method tends to produce excessive output greater than the minimal stockpile requirements; therefore, the study aims to overcome limitations like these by the allocation method for each weapon system according to targets. This allocation method is better than war-game simulation method.

Vision-based Reduction of Gyro Drift for Intelligent Vehicles (지능형 운행체를 위한 비전 센서 기반 자이로 드리프트 감소)

  • Kyung, MinGi;Nguyen, Dang Khoi;Kang, Taesam;Min, Dugki;Lee, Jeong-Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.627-633
    • /
    • 2015
  • Accurate heading information is crucial for the navigation of intelligent vehicles. In outdoor environments, GPS is usually used for the navigation of vehicles. However, in GPS-denied environments such as dense building areas, tunnels, underground areas and indoor environments, non-GPS solutions are required. Yaw-rates from a single gyro sensor could be one of the solutions. In dealing with gyro sensors, the drift problem should be resolved. HDR (Heuristic Drift Reduction) can reduce the average heading error in straight line movement. However, it shows rather large errors in some moving environments, especially along curved lines. This paper presents a method called VDR (Vision-based Drift Reduction), a system which uses a low-cost vision sensor as compensation for HDR errors.

Block-VN: A Distributed Blockchain Based Vehicular Network Architecture in Smart City

  • Sharma, Pradip Kumar;Moon, Seo Yeon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.184-195
    • /
    • 2017
  • In recent decades, the ad hoc network for vehicles has been a core network technology to provide comfort and security to drivers in vehicle environments. However, emerging applications and services require major changes in underlying network models and computing that require new road network planning. Meanwhile, blockchain widely known as one of the disruptive technologies has emerged in recent years, is experiencing rapid development and has the potential to revolutionize intelligent transport systems. Blockchain can be used to build an intelligent, secure, distributed and autonomous transport system. It allows better utilization of the infrastructure and resources of intelligent transport systems, particularly effective for crowdsourcing technology. In this paper, we proposes a vehicle network architecture based on blockchain in the smart city (Block-VN). Block-VN is a reliable and secure architecture that operates in a distributed way to build the new distributed transport management system. We are considering a new network system of vehicles, Block-VN, above them. In addition, we examine how the network of vehicles evolves with paradigms focused on networking and vehicular information. Finally, we discuss service scenarios and design principles for Block-VN.

Effect of Thermal Post-Treatment using the Black Body Networking of Carbon Nano Structure For Internal Conduction from Solar Radiation (태양복사열 내부전도 성능향상을 위한 탄소 나노구조체 흑체코팅 열처리 효과연구)

  • Kim, Dae Weon;Jang, Seong Min;Lee, Du Hui;Park, June Yi;Kim, Young Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.159-164
    • /
    • 2021
  • The Improvement of thermal performance using heat treatment of carbon nanotubes coated on the copper heat sink to take the radiation energy from solar ray for the energy harvesting in earth orbit. Using the additive coating of purified CNT for the increase of specific area and development of thermal conductive capacity, the performance of heat transfer is improved about 0.181 K/W while applying the power of 22 W under temperature of 3.98℃. Coating of purified CNT shows increase of area and volume of thermal layer however it led the partial thermal resistance.

An Intelligent Auto Parking System for Vehicles

  • Razinkova, Anastasia;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • Autoparking assistant systems are a new and very promising area in automotive systems engineering. Since the traffic in modern cities becomes more intense, it is getting harder for a driver. Those systems are necessary for an inexperienced one to find a proper parking slot, or to park in a narrow parking slot without damaging his car or the vehicles around. The implementation of autoparking assistant systems may reduce drivers' stress and make parking generally more comfortable. In addition, such system can be extremely useful for senior or disabled people or for drivers with reduced mobility. The implementation of autoparking assistant systems may increase the safety of the parking, and therefore the development of such systems is a highly-demanded task. We introduce an intelligent autoparking system that automatically generates trajectory for parking using a fuzzy logic. This paper consists of three parts. In first part we introduce trajectory generation method for parallel parking without collisions. Fuzzy-logic based trajectory generation algorithm is described in second part. Experimental results presented in the third part of the paper prove effectiveness of the proposed method.

A refinement and abstraction method of the SPZN formal model for intelligent networked vehicles systems

  • Yang Liu;Yingqi Fan;Ling Zhao;Bo Mi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.64-88
    • /
    • 2024
  • Security and reliability are the utmost importance facts in intelligent networked vehicles. Stochastic Petri Net and Z (SPZN) as an excellent formal verification tool for modeling concurrent systems, can effectively handles concurrent operations within a system, establishes relationships among components, and conducts verification and reasoning to ensure the system's safety and reliability in practical applications. However, the application of a system with numerous nodes to Petri Net often leads to the issue of state explosion. To tackle these challenges, a refinement and abstraction method based on SPZN is proposed in this paper. This approach can not only refine and abstract the Stochastic Petri Net but also establish a corresponding relationship with the Z language. In determining the implementation rate of transitions in Stochastic Petri Net, we employ the interval average and weighted average method, which significantly reduces the time and space complexity compared to alternative techniques and is suitable for expert systems at various levels. This reduction facilitates subsequent comprehensive system analysis and module analysis. Furthermore, by analyzing the properties of Markov Chain isomorphism in the case study, recommendations for minimizing system risks in the application of intelligent parking within the intelligent networked vehicle system can be put forward.

Research on Information Providing Method for Intelligent Navigation System

  • Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.657-670
    • /
    • 2012
  • Background: Today, numerous telematics technologies, i.e., technologies developed by integrating telecommunications with information processing, are applied in vehicles. One such developmental application of this technology to vehicles is to increase the safety or convenience of drivers by providing them with necessary information such as warnings and information on emergencies and traffic situations. However, under certain conditions, there is a high probability of traffic accidents if the driving workload is high. Nowadays, the navigation system is frequently used in the vehicles, this system provides various information including route to the driver. But, the existing navigation systems are not only considered a driver's reaction but also provide unilaterally to the information regardless of them. Such one-side information service type may miss important information to the driver. In addition, it sometimes interferes safety driving. Objective: To solve this problem, the intelligent navigation system needs to the providing way that it checks the driver's reactions after providing information. Namely, if the driver passes the information received from the navigation, then the intelligent system provides more loudly and more frequently. Method: Therefore, in this study we introduce the intelligent navigation system that it automatically controls modality type and its strength when the driver misses or overlooks the information for their safety and entertainment and we analyze the driver's cognitive responses about the modality type and its strength. Results: To evaluate the effectiveness of the proposed system, we analyzed the reaction time and driving workload for each type of the information, modality and its strength. Also we evaluated the users' subjective satisfaction and understanding based on a questionnaire.

Intelligent 3D Obstacles Recognition Technique Based on Support Vector Machines for Autonomous Underwater Vehicles

  • Mi, Zhen-Shu;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.213-218
    • /
    • 2009
  • This paper describes a classical algorithm carrying out dynamic 3D obstacle recognition for autonomous underwater vehicles (AUVs), Support Vector Machines (SVMs). SVM is an efficient algorithm that was developed for recognizing 3D object in recent years. A recognition system is designed using Support Vector Machines for applying the capabilities on appearance-based 3D obstacle recognition. All of the test data are taken from OpenGL Simulation. The OpenGL which draws dynamic obstacles environment is used to carry out the experiment for the situation of three-dimension. In order to verify the performance of proposed SVMs, it compares with Back-Propagation algorithm through OpenGL simulation in view of the obstacle recognition accuracy and the time efficiency.

Exploring the Impacts of Autonomous Vehicle Implementation through Microscopic and Macroscopic Approaches (자율주행차량 도입에 따른 교통 네트워크의 효율성 변화 분석연구)

  • Yook, Dong-Hyung;Lee, Baeck-Jin;Park, Jun-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.14-28
    • /
    • 2018
  • Thanks to technical improvement on the vehicle to vehicle communication and the intelligent transportation system, gradual introduction of the autonomous vehicles is expected soon in the market. The study analyzes the autonomous vehicles' impacts on the network efficiencies. In order to measure the network efficiencies, the study applies the sequential procedures that combines the microscopic and macroscopic simulations. The microscopic simulation attends to the capacity changes due to the autonomous vehicles' proportions on the roadway while the macroscopic simulation utilizes the simulation results in order to identify the network-wide improvement. As expected, the autonomous vehicles efficiently utilizes the existing capacity of the roadway than the human driving does. Particularly, the maximum capacity improvements are expected by the 190.5% on the expressway. The significant capacity change is observed when the autonomous vehicles' proportions are about 80% or more. These improvements are translated into the macroscopic model, which also yields overall network efficiency improvement by the autonomous vehicles' penetration. However, the study identifies that the market debut of the autonomous vehicles does not promise the free flow condition, which implies the possible needs of the system optimal routing scheme for the era of the autonomous vehicles.