• Title/Summary/Keyword: Intelligent robotics

Search Result 868, Processing Time 0.032 seconds

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.

Intelligent Sprayer System using Tree Recognition (과수 인식을 이용한 지능형 방제기 시스템 개발)

  • Hong, Hyung Gil;Woo, Seong Yong;Song, Su Hwan;Oh, Jang Seok;Yun, Haeyong;Seo, Kab Ho;Kwon, Soon Wook;Lee, Ki Yong;Lee, Jang Chang;Cho, Hee Keun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • Farmers using conventional sprayer system are exposed to pesticide poisoning and soil pollution due to pesticide application. In order to reduce this problem, the effective sprayer system is required. In this paper, we propose development of intelligent sprayer system using tree recognition. This intelligent sprayer system consists of an image recognition module, a remote control, a sprayer system, an air blower, and a control module. It is possible to spray pesticides automatically and manually through remote control using cameras and controls. We conducted a total of four experiments in tree recognition experiment, test of attachment and water sensitive papers, measurement of pesticide consumption, and measurement of worker exposure. The test results showed that the consumption of pesticides could be reduced while giving the same effect as conventional controls.

Emotional Behavior Decision Model Based on Linear Dynamic System for Intelligent Service Robots (지능형 서비스 로봇을 위한 선형 동적 시스템 기반의 감정 기반 행동 결정 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.760-768
    • /
    • 2007
  • This paper introduces an emotional behavior decision model based on linear system for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of intelligent service robots and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear dynamic system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented a cyber robot and an emotional head robot using 3D character for verifying the performance of the proposed emotional behavior decision model.

Development of Muscle-Strength-Assistant Device and Military Suitability for High-Weight Carrying (고중량물 운반을 위한 근력보조장치 개발 및 군 적합성 연구)

  • Kim, Hyeong-Rae;Park, Jang-Sik;Lee, Kyeong-Ha;Ryu, Jae-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2022
  • In this research, we developed the muscle-strength-assistant device, named as LEXO-W, and conducted suitability test for army when transporting high weights. LEXO-W relieves the burden when carrying heavy weights by distributing the load concentrated on the arms throughout the body. LEXO-W weighs 4 kg and is designed to handle objects weighing up to 55 kg. To verify the effectiveness of the device, object handling tests (high explosive shell, simple assembly bridges, and ammunition boxes) were conducted. Working time, metabolic rate, and electromyogram (EMG) signals were measured in each test. As a result, it was confirmed that the working time, metabolic rate and EMG signal before and after wearing LEXO-W were decreased. This research has great significance in that it verified the performance of the wearable device from the perspective of military operation.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Inverse Kinematics of Robot Fingers with Three Joints Using Neural Network (신경회로망을 이용한 3관절 로봇 손가락의 역기구학)

  • Kim, Byeong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The inverse kinematics problem in robotics is an essential work for grasping and manipulation tasks by robotic and humanoid hands. In this paper, an intelligent neural learning scheme for solving such inverse kinematics of humanoid fingers is presented. Specifically, a multi-layered neural network is utilized for effective inverse kinematics, where a dynamic neural learning algorithm is employed. Also, a bio-mimetic feature of general human fingers is incorporated to the learning scheme. The usefulness of the proposed approach is verified by simulations.

  • PDF

A Study of the Development of an Intelligent PID Cjontroller(II) (지능형 PID 제어기 개발에 관한 연구 II)

  • 유연운;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.847-852
    • /
    • 1993
  • In this paper, we present a recursive algorithm for the auto-tuning of PID controllers by optimizing a GPC criterion. Also, we develop an intelligent PID controller by combination of a recursive algorithm together with a supervisor, that allows to adjust the main controller parameters (prediction horizon, control weighting, sample time etc.) using some simple rules which is mainly built up through relay tuning experiments. The intelligent PID controller has been implemented successfully on an IBM PC/AT and some simulation results are presented.

  • PDF