• 제목/요약/키워드: Intelligent prediction

검색결과 726건 처리시간 0.025초

Video Quality Assessment Based on Short-Term Memory

  • Fang, Ying;Chen, Weiling;Zhao, Tiesong;Xu, Yiwen;Chen, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2513-2530
    • /
    • 2021
  • With the fast development of information and communication technologies, video streaming services and applications are increasing rapidly. However, the network condition is volatile. In order to provide users with better quality of service, it is necessary to develop an accurate and low-complexity model for Quality of Experience (QoE) prediction of time-varying video. Memory effects refer to the psychological influence factor of historical experience, which can be taken into account to improve the accuracy of QoE evaluation. In this paper, we design subjective experiments to explore the impact of Short-Term Memory (STM) on QoE. The experimental results show that the user's real-time QoE is influenced by the duration of previous viewing experience and the expectations generated by STM. Furthermore, we propose analytical models to determine the relationship between intrinsic video quality, expectation and real-time QoE. The proposed models have better performance for real-time QoE prediction when the video is transmitted in a fluctuate network. The models are capable of providing more accurate guidance for improving the quality of video streaming services.

On the Fuzzy Membership Function of Fuzzy Support Vector Machines for Pattern Classification of Time Series Data (퍼지서포트벡터기계의 시계열자료 패턴분류를 위한 퍼지소속 함수에 관한 연구)

  • Lee, Soo-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제17권6호
    • /
    • pp.799-803
    • /
    • 2007
  • In this paper, we propose a new fuzzy membership function for FSVM(Fuzzy Support Vector Machines). We apply a fuzzy membership to each input point of SVM and reformulate SVM into fuzzy SVM (FSVM) such that different input points can make different contributions to the learning of decision surface. The proposed method enhances the SVM in reducing the effect of outliers and noises in data points. This paper compares classification and estimated performance of SVM, FSVM(1), and FSVM(2) model that are getting into the spotlight in time series prediction.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

A Study on Implementation of Evolving Cellular Automata Neural System (진화하는 셀룰라 오토마타 신경망의 하드웨어 구현에 관한 연구)

  • 반창봉;곽상영;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-258
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system which is a living creatures' brain using evolving hardware concept. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogeny of natural living things. The proposed system developes each cell's state in neural network by CA. And it regards code of CA rule as individual of genetic algorithm, and evolved by genetic algorithm. In this paper we implement this system using evolving hardware concept Evolving hardware is reconfigurable hardware whose configuration is under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system is verified by applying it to time-series prediction.

  • PDF

Developed multiple linear regression model using genetic algorithm for predicting top-bead width in GMA welding process

  • Thao, D.T.;Kim, I.S.;Son, J.S.;Seo, J.B.
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.271-273
    • /
    • 2006
  • This paper focuses on the developed empirical models for the prediction on top-bead width in GMA(Gas Metal Arc) welding process. Three empirical models have been developed: linear, curvilinear and an intelligent model. Regression analysis was employed fur optimization of the coefficients of linear and curvilinear model, while Genetic Algorithm(GA) was utilized to estimate the coefficients of intelligent model. Not only the fitting of these models were checked, but also the prediction on top-bead width was carried out. ANOVA analysis and contour plots were respectively employed to represent main and interaction effects between process parameters on top-bead width.

  • PDF

Evolutionary Neural Network based on DNA Coding Method for Time Series Prediction (시계열 예측을 위한 DNA코딩 기반의 신경망 진화)

  • 이기열;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.224-227
    • /
    • 2000
  • In this Paper, we prepose a method of constructing neural networks using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series, Sun spot data and KOSPI data.

  • PDF

Discriminative Training of Sequence Taggers via Local Feature Matching

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.209-215
    • /
    • 2014
  • Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.

NEURAL NETWORK DYNAMIC IDENTIFICATION OF A FERMENTATION PROCESS

  • Syu, Mei-J.;Tsao, G.T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1021-1024
    • /
    • 1993
  • System identification is a major component for a control system. In biosystems, which is nonlinear and dynamic, precise identification would be very helpful for implementing a control system. It is difficult to precisely identify such non-linear systems. The measurable data on products from 2,3-butanediol fermentation could not be included in a process model based on kinetic approach. Meanwhile, a predictive capability is required in developing a control system. A neural network (NN) dynamic identifier with a by/(1+ t ) transfer function was therefore designed being able to predict this fermentation. This modified inverse NN identifier differs from traditional models in which it is not only able to see but also able to predict the system. A moving window, with a dimension of 11 and a fixed data size of seven, was properly designed. One-step ahead identification/prediction by an 11-3-1 BPNN is demonstrated. Even under process fault, this neural network is still able to perform several-step ahead prediction.

  • PDF

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, S.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.