• Title/Summary/Keyword: Intelligent optimization

Search Result 744, Processing Time 0.024 seconds

Reconfigurable Intelligent Surface assisted massive MIMO systems based on phase shift optimization

  • Xuemei Bai;Congcong Hou;Chenjie Zhang;Hanping Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2027-2046
    • /
    • 2024
  • Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the phase of incident signals with the help of low-cost passive reflective elements. It shows excellent potential in the sixth generation of mobile communication systems, which not only extends wireless coverage but also boosts channel capacity. Considering that multipath propagation and a high number of antennas are involved in RIS in assisted mega multiple-input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath effects, which in turn lead to signal instability and degradation of transmission performance. To overcome this obstacle, this essay suggests an improved gradient optimization algorithm to dynamically and optimally adjust the phase of the reflective elements to counteract channel fading and multipath effects as a strategy. In order to overcome the optimization problem of falling into local minima, this paper proposes an adaptive learning rate algorithm based on Adagrad improvement, which searches for the global optimal solution more efficiently and improves the robustness of the optimization algorithm. The suggested technique helps to enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to simulation results.

Co-Evolutionary Algorithms for the Realization of the Intelligent Systems

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.115-125
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in some problems. In designing intelligent systems, specially, since there is no deterministic solution, a heuristic trial-and error procedure is usually used to determine the systems' parameters. As an alternative scheme, therefore, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we review the existing co-evolutionary algorithms and propose co-evolutionary schemes designing intelligent systems according to the relation between the system's components.

  • PDF

Schema Analysis on Co-Evolutionary Algorithm (공진화에 있어서 스키마 해석)

  • Byung, Jun-Hyo;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.77-80
    • /
    • 1998
  • The theoretical foundations of simple genetic algorithm(SGA) are the Schema Theorem and the Building Block Hypothesis. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and cooperate each other. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. Also the experimental results show a co-evolutionary algorithm works well in optimization problems.

  • PDF

Posture Optimization for a Humanoid Robot using Particle Swarm Optimization (PSO를 이용한 휴머노이드 로봇의 최적자세 생성)

  • Yun, JaeHum;Chien, Dang Van;Tin, Tran Trung;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.450-456
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human and robot interaction. However, the robot's complicated body structure containing more than twenty joint actuators makes it difficult to generate stable and elaborate postures using the conventional inverse kinematic method. This paper proposes an alternative approach to generate difficult postures of touching an object placed in front of the foot by the left or right hand with its torso bent forward in single support phase using the fast computational optimization method, particle swarm optimization. The simulated postures are also applied to a commercial humanoid robot platform, which validates the feasibility of the proposed approach.

Path Planning Algorithm Using the Particle Swarm Optimization and the Improved Dijkstra Algorithm

  • Kang, Hwan-Il;Lee, Byung-Hee;Jang, Woo-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.176-179
    • /
    • 2007
  • In this paper, we develop the path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1].

  • PDF

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Adaptive Control of Strong Mutation Rate and Probability for Queen-bee Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • This paper introduces an adaptive control method of strong mutation rate and probability for queen-bee genetic algorithms. Although the queen-bee genetic algorithms have shown good performances, it had a critical problem that the strong mutation rate and probability should be selected by a trial and error method empirically. In order to solve this problem, we employed the measure of convergence and used it as a control parameter of those. Experimental results with four function optimization problems showed that our method was similar to or sometimes superior to the best result of empirical selections. This indicates that our method is very useful to practical optimization problems because it does not need time consuming trials.

Advanced Particle Swarm Optimization Technique for Fuzzy Time Series Forecasting (퍼지 시계열 예측을 위한 개선된 Particle Swarm Optimization 기법)

  • Park, Jin-Il;Lee, Dae-Jong;Jeon, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.11-12
    • /
    • 2008
  • 퍼지 시계열 예측은 전체 퍼지 구간에 따른 퍼지 소속 함수의 개수와 범위에 따라서 예측성능에 많은 영향을 미치고 있으며, 이러한 문제점을 개선하기 위한 방법으로 다수 객체들의 학습 및 군집 특성을 이용한 Particle Swarm Optimization기법을 도입하였다. 제안된 방법에서는 군집의 최적 객체를 전체 최적해와 각각의 퍼지 소속 함수들에 대한 최적해로 구분하여 탐색하는 기법을 제안한다. 실제 시계열 데이터를 이용한 실험을 통하여 기존의 연구 결과들과 비교함으로써 제안된 방법의 우수한 성능을 가짐을 검증하였다.

  • PDF

Fast Optimization by Queen-bee Evolution and Derivative Evaluation in Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.310-315
    • /
    • 2005
  • This paper proposes a fast optimization method by combining queen-bee evolution and derivative evaluation in genetic algorithms. These two operations make it possible for genetic algorithms to focus on highly fitted individuals and rapidly evolved individuals, respectively. Even though the two operations can also increase the probability that genetic algorithms fall into premature convergence phenomenon, that can be controlled by strong mutation rates. That is, the two operations and the strong mutation strengthen exploitation and exploration of the genetic algorithms, respectively. As a result, the genetic algorithm employing queen-bee evolution and derivative evaluation finds optimum solutions more quickly than those employing one of them. This was proved by experiments with one pattern matching problem and two function optimization problems.