• 제목/요약/키워드: Intelligent measuring method

검색결과 123건 처리시간 0.017초

공연장에서 다중 몰입도 측정을 위한 시스템 개발 (System Development for Measuring Group Engagement in the Art Center)

  • 류준모;최일영;최이권;김재경
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.45-58
    • /
    • 2014
  • 몰입은 관람객이 콘텐츠를 관람할 때 관람객들이 콘텐츠에 몰두하고 있는 심리적 상태를 의미하는 것으로, 관람객의 몰입경험은 콘텐츠의 만족도에 긍정적인 영향을 미친다. 따라서 공연 같은 콘텐츠를 제공하는 기업들은 콘텐츠의 흥행을 위해 관람객의 몰입도를 측정하는 것은 매우 중요하다. 설문 등의 표본조사 방법을 통해 관람객의 몰입도를 측정 연구는 방송분야 등 에서 널리 사용되고 있다. 이러한 몰입도 측정방법은 콘텐츠 관람 이후 설문을 실시하기 때문에 몰입도를 실시간으로 측정할 수 없을 뿐만 아니라 몰입도 측정의 정확성이 저하되는 문제 등이 있다. 이러한 문제를 해결하기 위하여 생리적 반응이나 얼굴 표정 분석, 그리고 움직임 관찰 방법 등을 이용하여 몰입도를 측정하는 연구가 수행되고 있다. 생체 신호를 이용하여 몰입도를 측정하는 연구의 경우, 1인을 대상으로 생체신호를 측정할 뿐만 아니라, 많은 데이터 처리 시간과 비용이 소모되는 단점이 있어 많은 관람객이 관람하는 공연장에 적용하기에는 한계가 있다. 얼굴 표정인식 통해 몰입도를 측정하는 경우도 1인을 대상으로 하고 있으며, 밝은 조명의 실험실 환경에서만 가능하다는 단점이 존재한다. 또한 관람객들의 움직인 동기화를 이용하여 몰입도를 특정한 연구는 다중관객을 대상으로 하였지만, 이는 실험실 환경에 한정하여 적용된 사례이다. 따라서 본 연구에서는 공연장, 시사회관 등 많은 관람객들이 콘텐츠를 관람하는 실제 환경에서 다중관람객이 다중몰입도의 정량적 평가를 위한 시스템을 설계하고 개발하였다. 제안된 시스템은 외부장치, 서버, 내부장치 등의 3부분으로 구성되어 있다. 서울시 마포구 상암동에 위치한 DMC 홍보관에 상설 전시장으로 운영하고 있으며, 관람객들을 대상으로 데이터를 획득하고 있다. 제안하고 있는 시스템을 활용하면 콘텐츠의 어느 구간에서 관객들이 몰입을 하고 있는지, 어느 구간에서 몰입을 하고 있지 못한지 분석가능하기 때문에, 향후 콘텐츠 제작 및 마케팅에 유용하게 활용할 수 있을 것으로 기대된다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.

국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법 (Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon)

  • 김서인;김동성;김종우
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.45-69
    • /
    • 2016
  • 최근에 빅 데이터를 활용하여 감성을 측정하는 시도가 활발히 이루어지고 있다. 통신 매체와 SNS의 발달로 기업은 국민의 감성을 파악하고 즉시 대응해야할 필요성이 생겼다. 우리나라의 경제는 대기업에 대한 의존도가 높기 때문에 10대 기업에 대한 감성분석은 의미가 있다고 할 수 있다. 이러한 측면에서 본 연구는 다 범주를 기준으로 구축한 감성사전을 활용하여 우리나라 10대 기업에 대한 감성을 분석하였다. 빅 데이터를 이용하여 감성을 분석한 기존의 선행연구는 감성을 차원으로 분류하는 경향이 있다. 차원적 감성으로 감성을 분류하는 것은 분류의 기준이 학술적으로 증명되었기에 감성 분석에 주로 사용되어 왔지만 전문가 정도의 지식이 있어야 분류할 수 있어 보편적인 감성을 대변하는 데 비효과적이기에 보완이 필요하다고 할 수 있다. 개별 범주적 감성은 이 점을 보완할 수 있는 분류 방식으로 일정 수준의 주관성이 개입되지만 보편적으로 느낄 수 있는 감성을 측정하는데 효과적이다. 따라서 본 연구는 보편적인 감성의 측정을 위해 감성을 차원으로 분류하지 않고 개별 범주로 분류하여 9가지 영역으로 나누었다. 선행 연구에서 추출한 9가지 범주에 해당하는 감성 단어에 기초하여 감성사전을 구축하였으며 감성 단어가 검출된 빈도를 기준으로 감성을 분석했다. 대상 데이터는 2014년 1월부터 2016년 1월까지 우리나라 10대 기업에 대하여 축적된 뉴스 데이터이다. 대상 데이터에서 검출된 감성 단어의 빈도를 기준으로 각 기업에 대한 감성 순위를 나누고 분포를 확인하였다. 기업에 따라서 감성이 다를 수 있는지, 특정 사건이 각 기업에 대한 감성에 영향을 줄 수 있는지 가설을 세우고 검정하였다. 결론적으로, 다 범주 감성 사전을 활용한 감성 분석은 기업 간 비교와 시점 간 비교에 유의한 것으로 나타났다. 본 연구는 빅 데이터에 산재해있는 감성을 국민의 시각으로 측정하는 하나의 대안으로서 의의가 있다.