• 제목/요약/키워드: Intelligent level

검색결과 1,149건 처리시간 0.026초

지방자치단체 자체 복지사업 지출 영향요인 분석 : 사회보장정보시스템을 통한 접근 (Analysis on Factors Influencing Welfare Spending of Local Authority : Implementing the Detailed Data Extracted from the Social Security Information System)

  • 김경준;함영진;이기동
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.141-156
    • /
    • 2013
  • 그 동안 한국 사회에서 지방자치단체(이하 지자체) 복지사업과 재정지출에 대한 연구는 장애인, 노인, 보육 등 복지사업 대상 등을 중심으로 부문별 복지지출에 대한 영향요인 연구가 대부분 이루어져 왔다. 최근 지자체의 자체적인 복지노력도 측면에서 자체 사업에 대한 연구가 특정 지역의 사례를 중심으로 이루어지기는 하고 있지만, 자료에 대한 접근과 조사의 한계로 여러 요인이 실증적으로 고려되지 못하여 정책적 함의를 도출해 내기 어려웠다. 현재 우리사회의 복지예산과 그 지출규모는 국가 예산의 30%에 이를 만큼 높은 비중을 차지하고 있다. 이에 따라 국가적 차원에서 공공복지 전달체계의 효율적 운영과 관리를 위해 사회보장 정보시스템을 구축, 운영하고 있다. 본 연구에서는 기존 연구에서 사용하는 지방재정시스템이 아닌 사회보장 정보시스템을 통하여 지자체 복지재정 지출과 관련, 기존 연구에서 한계점으로 지적되었던 전수데이터에 대한 접근과 조사를 실시하여 학문적이고 정책적인 함의를 도출해 내고자 한다. 사회보장정보시스템은 복지전달체계의 효율화를 위해 구축되었으며, 이를 통해 17개 부처 292개 복지사업이 집행되며, 230개 지자체 4만여 개 복지사업의 정보가 관리되고 있다. 이에 따라 본 연구는 사회보장정보시스템을 통해 관리되는 지자체 복지사업을 중심으로 지자체 복지지출에 미치는 영향요인을 탐색하고자 한다. 이를 위해 지자체 복지노력도로 대변되는 순수 시 군 구 복지예산액을 종속변수로 설정하였으며, 기존문헌 검토를 바탕으로 인구사회학적, 지역 경제적 그리고 지자체 재정적 요인을 독립변수로 설정하였다. 또한 독립변수 요인간 다중공선성 문제를 점검하였고, 다중공선성의 문제가 없는 것으로 확인된 수급자 비율, 영유아 비율, 아동청소년 비율, 복지비 비율, 구인배율, 재정자립도, 재정자주도의 총 7개 독립변수와, 소속 정당을 통제변수로 사용하여 결정요인의 변화를 분석하였다. 연구결과를 살펴보면 기본모델에서는 복지비 비율, 영유아 비율, 재정자립도, 재정자주도, 구인배율이 유의한 영향을 미치는 것으로 분석되었다. 그리고 기존 문헌에서 분석되지 못했던 시 군 구별 복지지출 영향요인의 차이점을 분석하였다. 또한 복지예산 총량 데이터에 근거한 기존 연구들이 논의하지 못했던 자체 복지사업 예산에 미치는 영향요인을 구체적으로 밝혀내는데 의의가 있다.

프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로 (Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service)

  • 이정승
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.35-52
    • /
    • 2019
  • 전자정부를 포함한 다양한 형태의 공공서비스가 제공됨에 따라 공공서비스 품질에 대한 국민의 요구 수준이 점점 높아지고 있다. 공공서비스의 품질을 높이기 위해서 공공서비스 품질에 대한 상시적 측정과 개선이 필요함에도 불구하고 전통적인 설문조사는 비용과 시간이 많이 소요되어 한계가 있다. 따라서 공공서비스에서 발생하는 데이터를 기반으로 원하는 시점에 언제라도 공공서비스의 품질을 빠르고 정확하게 측정할 수 있는 분석적 기법이 필요하다. 본 연구에서 공공서비스의 품질을 데이터 기반으로 분석하기 위해 N시의 건축 인허가 민원 서비스를 대상으로 프로세스 마이닝 기법을 이용하여 분석하였다. N시의 건축 인허가 민원 서비스는 분석에 필요한 데이터를 확보할 수 있고 공공서비스 품질관리를 통해 타 기관으로 확산 가능할 것으로 판단되었기 때문이다. 본 연구는 2014년 1월부터 2년 동안 N시에서 발생한 총 3678건의 건축 인허가 민원 서비스에 대해 프로세스 마이닝을 실시하여 프로세스 맵을 그리고 빈도가 높은 부서와 평균작업시간이 긴 부서를 파악하였다. 분석 결과에 따르면 특정 시점에 한 부서별로 업무가 몰리거나 상대적으로 업무가 적은 경우가 발생하였다. 또한 민원의 부하가 늘 경우 민원완료까지 걸리는 시간이 늘어날 것이라는 합리적인 의심을 하였으나 분석 결과 상관관계는 크게 없었다. 분석 결과에 따르면 민원완료까지 걸리는 시간은 당일처리에서 1년 146일까지 매우 다양하게 분포하였다. '하수처리과,' '수도과,' '도시디자인과,' '녹색성장과'의 상위 4개 부서의 누적빈도가 전체의 50%를 넘고 상위 9개 부서의 누적빈도가 70%를 넘어서는 등 빈도가 높은 부서는 한정적이며 부서 간 부하의 불균형이 심했다. 대부분의 민원 서비스는 서로 다른 다양한 패턴의 프로세스를 갖고 있었다. 본 연구의 결과를 활용하면 특정 시점에 민원의 부하가 큰 부서를 찾아내 부서 간 인력 배치를 탄력적으로 운영할 수 있을 것이다. 또한 민원 특성별 협의에 참여하는 부서의 패턴을 분석한 결과, 협의 부서 요청 시 자동화 혹은 추천에 활용할 수 있는 가능성이 보인다. 본 연구는 민원 서비스에 대한 프로세스 마이닝 분석을 통해 향후 공공서비스 품질 개선방향을 제시하는데 활용될 것으로 기대한다.

전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론 (Deep Learning-based Professional Image Interpretation Using Expertise Transplant)

  • 김태진;김남규
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.79-104
    • /
    • 2020
  • 최근 텍스트와 이미지 딥러닝 기술의 괄목할만한 발전에 힘입어, 두 분야의 접점에 해당하는 이미지 캡셔닝에 대한 관심이 급증하고 있다. 이미지 캡셔닝은 주어진 이미지에 대한 캡션을 자동으로 생성하는 기술로, 이미지 이해와 텍스트 생성을 동시에 다룬다. 다양한 활용 가능성 덕분에 인공지능의 핵심 연구 분야 중 하나로 자리매김하고 있으며, 성능을 다양한 측면에서 향상시키고자 하는 시도가 꾸준히 이루어지고 있다. 하지만 이처럼 이미지 캡셔닝의 성능을 고도화하기 위한 최근의 많은 노력에도 불구하고, 이미지를 일반인이 아닌 분야별 전문가의 시각에서 해석하기 위한 연구는 찾아보기 어렵다. 동일한 이미지에 대해서도 이미지를 접한 사람의 전문 분야에 따라 관심을 갖고 주목하는 부분이 상이할 뿐 아니라, 전문성의 수준에 따라 이를 해석하고 표현하는 방식도 다르다. 이에 본 연구에서는 전문가의 전문성을 활용하여 이미지에 대해 해당 분야에 특화된 캡션을 생성하기 위한 방안을 제안한다. 구체적으로 제안 방법론은 방대한 양의 일반 데이터에 대해 사전 학습을 수행한 후, 소량의 전문 데이터에 대한 전이 학습을 통해 해당 분야의 전문성을 이식한다. 또한 본 연구에서는 이 과정에서 발생하게 되는 관찰간 간섭 문제를 해결하기 위해 '특성 독립 전이 학습' 방안을 제안한다. 제안 방법론의 실현 가능성을 파악하기 위해 MSCOCO의 이미지-캡션 데이터 셋을 활용하여 사전 학습을 수행하고, 미술 치료사의 자문을 토대로 생성한 '이미지-전문 캡션' 데이터를 활용하여 전문성을 이식하는 실험을 수행하였다. 실험 결과 일반 데이터에 대한 학습을 통해 생성된 캡션은 전문적 해석과 무관한 내용을 다수 포함하는 것과 달리, 제안 방법론에 따라 생성된 캡션은 이식된 전문성 관점에서의 캡션을 생성함을 확인하였다. 본 연구는 전문 이미지 해석이라는 새로운 연구 목표를 제안하였고, 이를 위해 전이 학습의 새로운 활용 방안과 특정 도메인에 특화된 캡션을 생성하는 방법을 제시하였다.

한국 NPL시장 수익률 예측에 관한 연구 (A study on the prediction of korean NPL market return)

  • 이현수;정승환;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.123-139
    • /
    • 2019
  • 국내 NPL (Non performing loan) 시장은 1998년에 형성되었지만, 본격적으로 활성화 된 시기는 2009년으로 역사가 짧은 시장이다. 이로 인해 NPL 시장에 대한 연구도 아직까지는 활발히 진행되지 않고 있는 상황이다. 본 연구는 NPL 시장의 각 물건 별 기준 수익률 달성 유무를 예측할 수 있는 모델을 제안한다. 모델 구축에 사용되는 종속변수는 물건 별 최종 수익률이 기준 수익률 수치 도달 여부를 나타내는 이항변수를 사용하였고, 독립변수로는 물건의 특성을 나타내는 11개의 변수를 대상으로 one to one t-test와 logistic regression stepwise, decision tree를 수행하여 의미있는 7개의 독립변수를 선별하였다. 그리고 통상적으로 사용되는 기준 수익률 수치(12%)가 의미있는 기준 수치인지 확인하기 위해 수치 값을 조절해가며 종속변수를 산출하여 예측모델을 구축해보았다. 그 결과 12%의 기준 수익률 수치로 산출한 종속변수를 이용하여 구축한 예측모델의 평균 Hit ratio가 64.60%로 가장 우수하다는 결과를 얻었다. 다음으로 선별된 7개의 독립변수들과 12%를 기준으로한 수익률 달성유무 종속변수를 이용하여 판별분석, 로지스틱 회귀분석, 의사결정나무, 인공신경망, 유전자알고리즘 선형 모델의 5가지 방법론을 적용해 예측모델을 구축해보았다. 5가지 방법론으로 도출한 예측 모델 간 Hit ratio를 비교한 결과 인공신경망을 이용하여 구축한 예측모델의 Hit ratio가 67.4%로 가장 우수한 결과를 도출해내었다. 본 연구를 통해 추후 NPL시장 신규 물건 매매에 있어서 7가지의 독립변수들과 인공신경망 예측 모델을 활용하는 것이 효과적임을 증명하였다. 물건의 12% 수익률 달성 여부를 사전에 예측해봄으로써 유동화회사가 투자 의사결정을 하는 데에 도움을 줄 것으로 예상하며, 나아가 NPL 시장의 거래가 적정한 가격 선에서 진행됨으로 인해 유동성이 더욱 높아질 것이라 기대한다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발 (Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions)

  • 하상집;이준식;유인진;박도형
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.55-78
    • /
    • 2021
  • 최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.

협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구 (The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis)

  • 신창훈;이지원;양한나;최일영
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.19-42
    • /
    • 2012
  • 고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷 쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

문화예술상품 소비자의 가치인식이 추구혜택과 상품속성에 미치는 영향 (The Effects of Consumer Value Cognition on Benefits and Attributes of Culture-Art Products)

  • 신은주;이영선
    • Asia Marketing Journal
    • /
    • 제14권2호
    • /
    • pp.177-207
    • /
    • 2012
  • 문화예술상품은 일반 소비재와 달리 소비자의 가치인식에 따라 중요한 소비의 대상이 되기도 하고 그렇지 못할 수도 있는 특별한 상품이다. 물질적 소비재나 서비스 상품은 상품속성이 주는 물질적 및 비물질적 혜택을 상정하여 상품을 개발하고 그에 따른 마케팅전략을 수립하는 것이 효과적일 수 있다. 그러나 문화예술상품 소비는 소비자의 경험과 교육 등에 의해 형성된 문화예술에 대한 가치인식에 따라 소비추구혜택이 달라질 수 있고, 가치인식과 추구혜택은 문화예술상품의 속성을 선택하는 기준에 영향을 미칠 수 있을 것이다. 본 연구는 '문화예술상품에 대한 가치인식과 추구혜택에 관한 질적 연구'의 후속연구로서 질적 연구에서 나타난 개념구조를 바탕으로 문화예술상품에 대한 소비자의 가치인식 및 추구혜택과 상품속성의 하위차원을 규명하고, 수단-목적 사슬이론을 역으로 적용하여 문화예술상품에 대한 소비자의 가치인식이 추구혜택과 상품속성에 미치는 영향을 규명하고자 하였다. 그리하여 문화예술상품 생산 및 문화예술 정책기관과 문화예술을 활용하는 기업의 문화마케팅의 효율성을 제고하기 위한 실무적 시사점을 제시하고자 실시되었다. 10대 이상 50대 남녀 662명을 대상으로 자료를 수집하고 요인분석과 경로분석을 실시하였다. 예술상품에 대한 소비자의 가치인식과 추구혜택의 하위차원은 질적 연구 결과와 유사하게 나타났으며, 가치인식은 대부분 추구혜택을 매개로 하여 상품속성에 영향을 미치는 것으로 나타나 질적 연구결과와 마찬가지로 수단-목적사슬을 역방향으로 적용하는 것이 타당함을 입증하였다. 즉, 문화예술상품에 대한 소비자의 가치인식이 실제적 편익으로 구체화되고, 소비자는 이러한 추구혜택에 따라 상품속성의 중요도를 고려하여 구매의사를 결정하는 것으로 볼 수 있다. 본 연구는 문화예술상품에 대한 소비자의 가치인식을 긍정적으로 형성·강화시키는 것이 가장 중요한 소비 촉진 요인임을 입증하였으며, 문화예술상품 생산기관에서 소비자 중심의 상품개발과 기업의 효율적인 문화예술마케팅 전략을 개발하기 위한 소비자 정보와 실무적 시사점을 제시하였다. 또한 본 연구 결과는 국민의 삶의 질을 향상시키고자 하는 국가기관의 정책 수립을 위한 유용한 정보로 활용될 수 있을 것이다.

  • PDF