• 제목/요약/키워드: Intelligent Technology

검색결과 4,104건 처리시간 0.031초

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.

쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹 (Image Watermarking for Copyright Protection of Images on Shopping Mall)

  • 배경율
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.147-157
    • /
    • 2013
  • 디지털 환경의 도래와 언제 어디서나 접근할 수 있는 고속 네트워크의 도입으로 디지털 콘텐츠의 자유로운 유통과 이용이 가능해졌다. 이러한 환경은 역설적으로 다양한 저작권 침해를 불러 일으키고 있으며, 온라인 쇼핑몰에서 사용하는 상품 이미지의 도용이 빈번하게 발생하고 있다. 인터넷 쇼핑몰에 올라오는 상품 이미지와 관련해서는 저작물성에 대한 시비가 많이 일어나고 있다. 2001년 대법원 판결에 의하면 햄 광고를 위하여 촬영한 사진은 단순히 제품의 모습을 전달하는 사물의 복제에 불과할 뿐 창작적인 표현이 아니라고 적시하였다. 다만 촬영자의 손해액에 대해서는 인정함으로써 광고사진 촬영에 소요되는 통상적인 비용을 손해액으로 산정하게 하였다. 상품 사진 이외의 실내사진이라 하여도 '한정된 공간에서 촬영되어 누가 찍어도 동일한 사진'이 나올 수 밖에 없는 경우에는 창작성을 인정하지 않고 있다. 2003년 서울지방법원의 판례는 쇼핑몰에 사용된 사진에서 피사체의 선정, 구도의 설정, 빛의 방향과 양의 조절, 카메라 각도의 설정, 셔터의 속도, 셔터찬스의 포착 기타 촬영방법, 현상 및 인화 등의 과정에서 촬영자의 개성과 창조성이 인정되면 저작권법에 의하여 보호되는 저작물에 해당한다고 선고하여 손해를 인정하였다. 결국 쇼핑몰 이미지도 저작권법상의 보호를 받기 위해서는 단순한 제품의 상태를 전달하는 것이 아니라 촬영자의 개성과 창조성이 인정될 수 있는 노력이 필요하다는 것이며, 이에 따라 쇼핑몰 이미지를 제작하는 비용이 상승하고 저작권보호의 필요성은 더욱 높아지게 되었다. 온라인 쇼핑몰의 상품 이미지는 풍경사진이나 인물사진과 같은 일반 영상과 달리 매우 독특한 구성을 갖고 있으며, 따라서 일반 영상을 위한 이미지 워터마킹 기술로는 워터마킹 기술의 요구사항을 만족시킬 수 없다. 쇼핑몰에서 주로 사용되는 상품 이미지들은 배경이 흰색이거나 검은색, 또는 계조(gradient)색상으로 이루어져 있어서 워터마크를 삽입할 수 있는 공간으로 활용이 어렵고, 약간의 변화에도 민감하게 느껴지는 영역이다. 본 연구에서는 쇼핑몰에 사용되는 이미지의 특성을 분석하고 이에 적합한 이미지 워터마킹 기술을 제안하였다. 제안된 이미지 워터마킹 기술은 상품 이미지를 작은 블록으로 분할하고, 해당 블록에 대해서 DCT 양자화 처리를 함으로써 워터마크 정보를 삽입할 수 있도록 하였다. 균일한 DCT 계수 양자화 값의 처리는 시각적으로 영상에 블록화 현상을 불러오기 때문에 제안한 알고리즘에서는 블록의 경계 면에 붙어있는 영상 값에 대해서는 양자화 값의 분배를 작게 하고, 경계 면에서 멀리 떨어져있는 영상 값에 대해서는 양자화 값의 분배를 크게 함으로써 영상의 객관적 품질뿐 아니라 시각적으로 느끼는 주관적 품질도 향상 시켰다. 제안한 알고리즘에 의해서 워터마크가 삽입된 쇼핑몰 이미지의 PSNR(Peak Signal to Noise Ratio)은 40.7~48.5[dB]로 매우 우수한 품질을 보였으며, 일반 쇼핑몰 이미지에서 많이 사용되는 JPEG 압축은 QF가 70 이상인 경우에는 BER이 0이 나왔다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.

전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안 (Efficient Topic Modeling by Mapping Global and Local Topics)

  • 최호창;김남규
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.69-94
    • /
    • 2017
  • 최근 빅데이터 분석 수요의 지속적 증가와 함께 관련 기법 및 도구의 비약적 발전이 이루어지고 있으며, 이에 따라 빅데이터 분석은 소수 전문가에 의한 독점이 아닌 개별 사용자의 자가 수행 형태로 변모하고 있다. 또한 전통적 방법으로는 분석이 어려웠던 비정형 데이터의 활용 방안에 대한 관심이 증가하고 있으며, 대표적으로 방대한 양의 텍스트에서 주제를 도출해내는 토픽 모델링(Topic Modeling)에 대한 연구가 활발히 진행되고 있다. 전통적인 토픽 모델링은 전체 문서에 걸친 주요 용어의 분포에 기반을 두고 수행되기 때문에, 각 문서의 토픽 식별에는 전체 문서에 대한 일괄 분석이 필요하다. 이로 인해 대용량 문서의 토픽 모델링에는 오랜 시간이 소요되며, 이 문제는 특히 분석 대상 문서가 복수의 시스템 또는 지역에 분산 저장되어 있는 경우 더욱 크게 작용한다. 따라서 이를 극복하기 위해 대량의 문서를 하위 군집으로 분할하고, 각 군집별 분석을 통해 토픽을 도출하는 방법을 생각할 수 있다. 하지만 이 경우 각 군집에서 도출한 지역 토픽은 전체 문서로부터 도출한 전역 토픽과 상이하게 나타나므로, 각 문서와 전역 토픽의 대응 관계를 식별할 수 없다. 따라서 본 연구에서는 전체 문서를 하위 군집으로 분할하고, 각 하위 군집에서 대표 문서를 추출하여 축소된 전역 문서 집합을 구성하고, 대표 문서를 매개로 하위 군집에서 도출한 지역 토픽으로부터 전역 토픽의 성분을 도출하는 방안을 제시한다. 또한 뉴스 기사 24,000건에 대한 실험을 통해 제안 방법론의 실무 적용 가능성을 평가하였으며, 이와 함께 제안 방법론에 따른 분할 정복(Divide and Conquer) 방식과 전체 문서에 대한 일괄 수행 방식의 토픽 분석 결과를 비교하였다.

공공 서비스 수출 플랫폼을 위한 온톨로지 모형 (An Ontology Model for Public Service Export Platform)

  • 이광원;박세권;류승완;신동천
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.149-161
    • /
    • 2014
  • 공공 서비스의 수출의 경우 수출 절차와 대상 선정에 따른 다양한 문제가 발생하며, 공공 서비스 수출 플랫폼은 이러한 문제점들을 해결하기 위하여 사용자 중심의 유연하고, 개방형 구조의 디지털 생태계를 조성할 수 있도록 구현되어야 한다. 또한 공공서비스의 수출은 다수의 이해당사자가 참여하고 여러 단계의 과정을 거쳐야 하므로 사용자의 이해 종류와 탐색 컨설팅 협상 계약 등 수출 프로세스 단계별로 맞춤형 플랫폼 서비스 제공이 필수적이다. 이를 위해서 플랫폼 구조는 도메인과 정보의 정의 및 공유는 물론 지식화를 지원할 수 있어야 한다. 본 논문에서는 공공서비스 수출을 지원하는 플랫폼을 위한 온톨로지 모형을 제안한다. 서비스 플랫폼의 핵심 엔진은 시뮬레이터 모듈이며 시뮬레이터 모듈에서는 온톨로지를 사용하여 수출 비즈니스의 여러 컨텍스트들을 파악하고 정의하여 다른 모듈들과 공유하게 된다. 온톨로지는 공유 어휘를 통하여 개념들과 그들 간의 관계를 표현할 수 있으므로 특정 영역에서 구조적인 틀을 개발하기 위한 메타 정보를 구성하는 효과적인 도구로 잘 알려져 있다. 공공서비스 수출 플랫폼을 위한 온톨로지는 서비스, 요구사항, 환경, 기업, 국가 등 5가지 카테고리로 구성되며 각각의 온톨로지는 요구분석과 사례 분석을 통하여 용어를 추출하고 온톨로지의 식별과 개념적 특성을 반영하는 구조로 설계한다. 서비스 온톨로지는 목적효과, 요구조건, 활동, 서비스 분류 등으로 구성되며, 요구사항 온톨로지는 비즈니스, 기술, 제약으로 구성 된다. 환경 온톨로지는 사용자, 요구조건, 활동으로, 기업 온톨로지는 활동, 조직, 전략, 마케팅, 시간으로 구성되며, 국가 온톨로지는 경제, 사회기반시설, 법, 제도, 관습, 인프라, 인구, 위치, 국가전략 등으로 구성된다. 수출 대상 서비스와 국가의 우선순위 리스트가 생성되면 갭(gap) 분석과 매칭 알고리즘 등의 시뮬레이터를 통하여 수출기업과 수출지원 프로그램과의 시스템적 연계가 이루어진다. 제안하는 온톨로지 모형 기반의 공공서비스 수출지원 플랫폼이 구현되면 이해당사자 모두에게 도움이 되며 특히 정보 인프라와 수출경험이 부족한 중소기업에게 상대적으로 더 큰 도움이 될 것이다. 또한 개방형 디지털 생태계를 통하여 이해당사자들이 정보교환, 협업, 신사업 기획 등의 기회를 만들 수 있을 것으로 기대한다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.

머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로 (Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model)

  • 엄하늘;김재성;최상옥
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.105-129
    • /
    • 2020
  • 본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.

전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론 (Deep Learning-based Professional Image Interpretation Using Expertise Transplant)

  • 김태진;김남규
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.79-104
    • /
    • 2020
  • 최근 텍스트와 이미지 딥러닝 기술의 괄목할만한 발전에 힘입어, 두 분야의 접점에 해당하는 이미지 캡셔닝에 대한 관심이 급증하고 있다. 이미지 캡셔닝은 주어진 이미지에 대한 캡션을 자동으로 생성하는 기술로, 이미지 이해와 텍스트 생성을 동시에 다룬다. 다양한 활용 가능성 덕분에 인공지능의 핵심 연구 분야 중 하나로 자리매김하고 있으며, 성능을 다양한 측면에서 향상시키고자 하는 시도가 꾸준히 이루어지고 있다. 하지만 이처럼 이미지 캡셔닝의 성능을 고도화하기 위한 최근의 많은 노력에도 불구하고, 이미지를 일반인이 아닌 분야별 전문가의 시각에서 해석하기 위한 연구는 찾아보기 어렵다. 동일한 이미지에 대해서도 이미지를 접한 사람의 전문 분야에 따라 관심을 갖고 주목하는 부분이 상이할 뿐 아니라, 전문성의 수준에 따라 이를 해석하고 표현하는 방식도 다르다. 이에 본 연구에서는 전문가의 전문성을 활용하여 이미지에 대해 해당 분야에 특화된 캡션을 생성하기 위한 방안을 제안한다. 구체적으로 제안 방법론은 방대한 양의 일반 데이터에 대해 사전 학습을 수행한 후, 소량의 전문 데이터에 대한 전이 학습을 통해 해당 분야의 전문성을 이식한다. 또한 본 연구에서는 이 과정에서 발생하게 되는 관찰간 간섭 문제를 해결하기 위해 '특성 독립 전이 학습' 방안을 제안한다. 제안 방법론의 실현 가능성을 파악하기 위해 MSCOCO의 이미지-캡션 데이터 셋을 활용하여 사전 학습을 수행하고, 미술 치료사의 자문을 토대로 생성한 '이미지-전문 캡션' 데이터를 활용하여 전문성을 이식하는 실험을 수행하였다. 실험 결과 일반 데이터에 대한 학습을 통해 생성된 캡션은 전문적 해석과 무관한 내용을 다수 포함하는 것과 달리, 제안 방법론에 따라 생성된 캡션은 이식된 전문성 관점에서의 캡션을 생성함을 확인하였다. 본 연구는 전문 이미지 해석이라는 새로운 연구 목표를 제안하였고, 이를 위해 전이 학습의 새로운 활용 방안과 특정 도메인에 특화된 캡션을 생성하는 방법을 제시하였다.

효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구 (Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search)

  • 이현정;손미애
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.19-33
    • /
    • 2013
  • 본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지(Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜 네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반 하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.