• 제목/요약/키워드: Intelligent Structure

검색결과 1,238건 처리시간 0.027초

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.

네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템 (Major Class Recommendation System based on Deep learning using Network Analysis)

  • 이재규;박희성;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.95-112
    • /
    • 2021
  • 대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.

주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법 (Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being)

  • 최석재;송영은;권오병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.83-105
    • /
    • 2016
  • 의료IT 서비스의 유망 분야인 정신건강 증진을 위한 주관적 웰빙 서비스(subjective well-being service) 구현의 핵심은 개인의 주관적 웰빙 상태를 정확하고 무구속적이며 비용 효율적으로 측정하는 것인데 이를 위해 보편적으로 사용되는 설문지에 의한 자기보고나 신체부착형 센서 기반의 측정 방법론은 정확성은 뛰어나나 비용효율성과 무구속성에 취약하다. 비용효율성과 무구속성을 보강하기 위한 온라인 텍스트 기반의 측정 방법은 사전에 준비된 감정어 어휘만을 사용함으로써 상황에 따라 감정어로 볼 수 있는 이른바 상황적 긍부정성(contextual polarity)을 고려하지 못하여 측정 정확도가 낮다. 한편 기존의 상황적 긍부정성을 활용한 감성분석으로는 주관적 웰빙 상태인 맥락에서의 감성분석을 할 수 있는 감정어휘사전이나 온톨로지가 구축되어 있지 않다. 더구나 온톨로지 구축도 매우 노력이 소요되는 작업이다. 따라서 본 연구의 목적은 온라인상에 사용자의 의견이 표출된 비정형 텍스트로부터 주관적 웰빙과 관련한 상황감정어를 추출하고, 이를 근거로 상황적 긍부정성 파악의 정확도를 개선하는 방법을 제안하는 것이다. 기본 절차는 다음과 같다. 먼저 일반 감정어휘사전을 준비한다. 본 연구에서는 가장 대표적인 디지털 감정어휘사전인 SentiWordNet을 사용하였다. 둘째, 정신건강지수를 동적으로 추정하는데 필요한 비정형 자료인 Corpora를 온라인 서베이로 확보하였다. 셋째, Corpora로부터 세 가지 종류의 자원을 확보하였다. 넷째, 자원을 입력변수로 하고 특정 정신건강 상태의 지수값을 종속변수로 하는 추론 모형을 구축하고 추론 규칙을 추출하였다. 마지막으로, 추론 규칙으로 정신건강 상태를 추론하였다. 본 연구는 감정을 분석함에 있어, 기존의 연구들과 달리 상황적 감정어를 적용하여 특정 도메인에 따라 다양한 감정 어휘를 파악할 수 있다는 점에서 독창성이 있다.

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식 (Recognition of Resident Registration Card using ART2-based RBF Network and face Verification)

  • 김광백;김영주
    • 지능정보연구
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2006
  • 우리나라의 주민등록증은 주소지, 주민등록번호, 얼굴사진, 지문 등 개인의 다양한 정보를 가진다. 현재의 플라스틱형 주민등록증은 위조 및 변조가 쉽고 그 수법이 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 문제를 일으키고 있다. 이에 본 논문에서는 개선된 ART2 기반 RBF 네트워크에 이용한 주민등록번호 인식과 얼굴 인증을 통한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상으로부터 주민등록번호와 발행일을 추출하기 위하여 주민등록증 영상에 소벨 마스킹와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 추출한다. 그리고 원영상에 대해 고주파 필터링을 적용하여 영상 전체를 이진화하고, 이진화된 영상에 CDM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원한 다음, 검출된 각 영역에 대해 4-방향 윤곽선 추적 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 주민등록번호 등의 개별 문자를 인식하기 위해 개선된 ART2 기반 RBF 네트워크를 제안하고 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간층과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴 인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증에서 추출된 얼굴 영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다. 제안된 주민등록증 인식 방법의 성능을 평가하기 위해 원본 주민등록증 영상에 대해 얼굴 영역 위조, 노이즈추가, 대비 증감, 밝기 증감 그리고 영상 흐리기 등의 변형된 영상들을 생성하여 실험한 결과, 제안된 방법이 주민등록번호 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다

  • PDF

웹사이트 중복회원 관리 : 소셜 네트워크 분석 접근 (Managing Duplicate Memberships of Websites : An Approach of Social Network Analysis)

  • 강은영;곽기영
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.153-169
    • /
    • 2011
  • 오늘날 기업의 마케팅에 있어 인터넷 환경의 이용은 필수적이며, 좀 더 효율적인 마케팅을 위해 다양한 방법들이 시도되고 있다. 기업들은 온라인마케팅을 통해 다양한 경품이나 포인트 등의 마케팅 비용을 사용하는 것으로 제품이나 서비스를 알려왔다. 특히 웹 2.0의 등장과 함께 기업은 좀 더 적극적으로 고객과 소통하기 위한 노력을 아끼지 않고 있다. 고객들은 회사의 웹사이트에 개인정보를 제공하는 형태로 회원가입을 하여 회사가 제공하는 혜택을 받으면서 제품 광고나 프로모션에 참여하게 된다. 그러나 온라인 마케팅의 운영측면에서 볼 때 현재의 회원관리 시스템은 회원의 모집과 운영에 있어서 효과적이지 못한 문제점이 나타나고 있다. 온라인 환경에서의 고객들은 오프라인 환경에서보다 명확한 자아를 덜 드러내기 때문에 회원가입 과정 중에 일부 악의적인 목적을 가진 고객들이 주변인의 개인정보를 이용하거나 조작하여 중복 아이디를 만들어 활동할 수 있게 된다. 이러한 취약점을 이용하여 중복가입 회원들은 고객들에게 돌아가야 할 경품이나 포인트 등을 가로채어 기업 마케팅 비용의 효율을 떨어뜨리고 있다. 그러나 증가하고 있는 마케팅 비용에 비해 중복회원의 선별 및 이들에 대한 제재를 위한 효과적 방법은 뚜렷하게 제시되지 않고 있다. 따라서 이를 방지하기 위한 체계적인 회원관리 시스템이 요구된다. 본 연구에서는 소셜 네트워크 분석 기법을 이용한 중복회원 식별방법을 제시하고 실제 온라인 고객데이터를 이용하여 그 효과성을 검증한다. 소셜 네트워크는 노드들의 관계를 표현하며, 관계의 유무, 방향 및 강도 등으로 연결 형태를 나타낼 수 있다. 특히 컴포넌트 분석방법은 소셜 네트워크 하위그룹 분석방법으로 네트워크의 내부 그룹을 구분하여 다양한 네트워크 특성을 식별하여 준다. 회원정보 분석에 있어 컴포넌트 분석방법은 전제회원 데이터 내의 의미 있는 정보를 이루고 있는 그룹을 식별하게 된다. 본 연구는 H사의 서로 다른 회원가입 기준을 가진 3개 웹사이트의 회원정보를 사용하여 진행되었다. 제안된 분석방법은 중복회원의 실체를 분석하고 시각화함으로써, 실무적인 측면에서 효율적인 마케팅의 증진을 도울 뿐만 아니라 신뢰성 있는 고객의 의견수렴 및 의사결정에도 도움이 될 것으로 기대된다.

중복을 허용한 계층적 클러스터링에 의한 복합 개념 탐지 방법 (Hierarchical Overlapping Clustering to Detect Complex Concepts)

  • 홍수정;최중민
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.111-125
    • /
    • 2011
  • 클러스터링(Clustering)은 유사한 문서나 데이터를 묶어 군집화해주는 프로세스이다. 클러스터링은 문서들을 대표하는 개념별로 그룹화함으로써 사용자가 자신이 원하는 주제의 문서를 찾기 위해 모든 문서를 검사할 필요가 없도록 도와준다. 이를 위해 유사한 문서를 찾아 그룹화하고, 이 그룹의 대표되는 개념을 도출하여 표현해주는 기법이 요구된다. 이 상황에서 문제점으로 대두되는 것이 복합 개념(Complex Concept)의 탐지이다. 복합 개념은 서로 다른 개념의 여러 클러스터에 속하는 중복 개념이다. 기존의 클러스터링 방법으로는 문서를 클러스터링할 때 동일한 레벨에 있는 서로 다른 개념의 클러스터에 속하는 중복된 복합 개념의 클러스터를 찾아서 표현할 수가 없었고, 또한 복합 개념과 각 단순 개념(Simple Concept) 사이의 의미적 계층 관계를 제대로 검증하기가 어려웠다. 본 논문에서는 기존 클러스터링 방법의 문제점을 해결하여 복합 개념을 쉽게 찾아 표현하는 방법을 제안한다. 기존의 계층적 클러스터링 알고리즘을 변형하여 동일 레벨에서 중복을 허용하는 계층적 클러스터링(Hierarchical Overlapping Clustering, HOC) 알고리즘을 개발하였다. HOC 알고리즘은 문서를 클러스터링하여 그 결과를 트리가 아닌 개념 중복이 가능한 Lattice 계층 구조로 표현함으로써 이를 통해 여러 개념이 중복된 복합 개념을 탐지할 수 있었다. HOC 알고리즘을 이용해 생성된 각 클러스터의 개념이 제대로 된 의미적인 계층 관계로 표현되었는지는 특징 선택(Feature Selection) 방법을 적용하여 검증하였다.

자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로 (Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products)

  • 박도형;정재권;정여진;이동원
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.1-23
    • /
    • 2014
  • 시장 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로 정의할 수 있다. 정확한 시장 예측은 기업의 입장에서 새로운 제품의 도입시기 결정, 제품 설계, 생산계획 수립, 마케팅 전략 수립 등에 활용됨으로써 경영활동에 있어 효율적인 의사결정을 내릴 수 있게 하고, 정부의 입장에서는 발전 가능성이 있는 분야에 국가예산을 더 배분할 수 있는 효율적인 예산수립이 가능하게 한다. 본 연구는 정보통신기술(Information and Communication Technology: ICT) 분야의 제품 및 서비스에 대해서 과거의 시계열 자료를 이용하여 시장 성장곡선을 도출하고, 성장패턴이 비슷한 그룹으로 분류하여, 산업 내 시장에 대해 이해하고, 제품들의 미래 전망을 예측하는 데 목적이 있다. 다양한 아이템들을 통일되고 일관적인 방법으로 예측하기 위하여, 로지스틱 모형, 곰페르츠 모형, Bass 모형의 세 가지 전통적인 성장모형과 로지스틱 모형이나 곰페르츠 모형에서 도출되는 잠재시장 크기를 Bass 모형에 결합시킨 두 가지 하이브리드 성장모형을 개발하여 비교 분석하였다. 데이터 설명력이 우수한 로지스틱 + Bass 모형을 최적의 모형으로 선정하여 ICT 제품 및 서비스들 각각의 시장 성장곡선 모수를 확인하였다. 도출된 모수를 데이터로 하여, 자기조직화 지도 알고리즘을 통해, 5개의 의미 있는 영역으로 구분된 시장 성장패턴 지도가 구축되었는데, 각 영역별로 차별화된 특징과 성장패턴을 가지고 있었다. 본 연구에서 제안한 프로세스 및 시스템은 산업 시장 분석 시스템의 수요 예측 기능으로 활용될 수 있으며, ICT 산업뿐만 아니라 다양한 산업 및 분야에도 적용 가능할 것으로 기대된다.

하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성 (Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water)

  • 김홍규;정성원
    • 생물환경조절학회지
    • /
    • 제16권3호
    • /
    • pp.210-216
    • /
    • 2007
  • 본 연구는 하향 분사식 미니스프링클러의 낙수방지를 위한 새로운 제안으로 패킹부를 구성하여 패킹과 패킹지지부, 패킹 연결지지체의 메카니즘 분석과 구조 해석을 통하여 패킹부 소재 선정의 타당성을 확인하여 하향 분사식 미니스프링클러의 낙수방지 메카니즘을 개발하고, 제품을 제작하여 살수특성 실험을 수행한 결과는 다음과 같다. 낙수방지를 위하여 삽입되는 패킹부의 재료는 구조해석결과, 압력변화에 대응할 수 있는 재질로서 패킹재는 천연고무(ASTM; NR), 패킹지지체는 폴리프로필렌(PP)이 적합함을 확인하였다. 성능시험 결과, 미니스프링클러의 접속관에 용수를 공급할 때와 중단되는 과정의 대기압과 평형상태에서 선정된 패킹 및 패킹지지체는 압력제어 기능을 정확히 수행하여 낙수가 거의 발생하지 않고, 압력변화에도 민감하게 대응함을 확인하였다. 작용압력별 살수특성 성능을 분석한 결과, 유효살수반경, 유효살수면적, 평균살수심, 최대살수심, 유효최대살수심은 작용압력이 증가함에 따라 모두 증가하는 것으로 나타났다. 살수높이별 살수특성 성능을 분석한 결과, 유효살수반경과 유효살수면적은 살수 높이가 0.2m일 때 가장 낮은 값을, 0.3m일 때 가장 높은 값을 보였고, 그 이상 살수 높이가 높아지면 반대로 감소하였으며, 평균살수심은 살수높이가 높아질수록 감소하였다. 제안된 하향 분사식 미니스프링클러는 패킹부의 영향으로 압력이 증가함에 따라 살수성능이 유연성 있게 변화하여 급격한 변화를 나타내지 않았고, 용수압력이 감소될 때에는 작용압력이 $1.1kgf/cm^2$이상의 범위에서만 살수되었으며, 그 이하에서는 제안된 패킹부에 의해 하향 분사식 미니스프링클러 본체로 공급되는 용수가 차단되어, 대기압과 평형상태에 있는 물의 자중과 중력작용에 의한 자유낙하를 방지함으로서 물방울의 형성 및 낙수 발생의 예방을 확인하였다.}\;10^4\;cell/ml$이던 것이 3 일 후 $138\;{\times}\;10^4\;cell/ml$였고, 실험종료시인 5 일 후에는 $385\;{\times}\;10^4\;cell/ml$로 증식되어 가장 높은 증식률을 보였다. 참굴 D상 유생을 대상으로 먹이효과를 조사한 결과 실험구와 대조구간 유생의 성장 및 생존율에 유의한 차이를 보이지 않았다.C$에서 73.3%, $10^{\circ}C$에서 63.3% 및 $5^{\circ}C$에서 56.7%로 수온이 $30^{\circ}C$ 이내에서는 높을수록 높은 경향을 보였다. 염분에 따른 잠입 실험 결과는 실험 개시 300분 경과 후 염분 30 psu에서 93.3%로 가장 높았고, 35 psu에서 90.0%, 25 psu에서 83.3%, 20 psu에서 60.0%, 15 psu 이하에서는 거의 잠입이 이루어 지지 않았다. 따라서, 적정 살포를 위한 잠입률은 치패의 크기와 상관없이 저질종류는 모래 (75%) + 뻘 (25%), 입자크기는 1 mm 모래에서 높게 나타났다. 공기 중 노출시간은 짧을수록, 수온은 $30^{\circ}C$ 이내에서 높을수록, 염분은 20-35 psu 이내에서 높을수록 잠입률이 높은 경향을 나타내었다. 교수학습모형에 관련된 지식을 묻는 내용으로 주로 출제되었다. 이에 구체적인 개선방안으로 특정 교수학습모형의 이론적 토대가 되고 전체적인 교수설계를 하기 위한 기본 바탕이 될 수 있는 교수학습이론에 관한 내용, 또한 현재가정과교육에 있어서 유용한 교수학습법이라고 입증되고 있는 실천적 추론 가정과 수업에 관한 내용으로의 확대를 제안하였다. 가정과교육평가 문항의 출제는 대다수의 문항이 수행평가에 관한 문항내용으로

3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법 (A Control Method for designing Object Interactions in 3D Game)

  • 김기현;김상욱
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권3호
    • /
    • pp.322-331
    • /
    • 2003
  • 3차원 게임은 게임 시나리오의 다양한 요소에 의한 복잡도가 증가함에 따라 게임 객체들의 상호 관계를 제어하기 위한 문제점을 가진다. 그러므로, 게임 시스템은 각 게임 객체들의 응답을 조정하는 방법의 필요성을 가진다. 또한, 게임 시나리오의 결과에 따라 게임 객체들의 행동 애니메이션을 제어하기 위한 개념들도 필요하다. 사실적 게임 시뮬레이션을 생성하기 위해 시스템은 게임 객체들의 상호작용을 디자인 할 수 있는 구조를 포함해야 한다. 본 논문에서 게임 시나리오상에 게임 객체들의 상호작용 설계를 위해 동적 제어를 디자인하는 기법을 소개한다. 이 방법을 위해 특정 규칙을 이용한 의사결정이 가능한 지능적 에이전트 기반 구조로써 게임 에이전트 시스템을 제안한다. 게임 에이전트 시스템은 환경 데이터 처리, 게임 객체 시뮬레이션, 게임 객체들간의 상호작용 제어, 게임 객체들의 다양한 상호 관계를 정의할수 있는 시각 저작 인터페이스를 제공하기 위해 이용되어진다. 이들 기술들은 게임 객체의 자율성과 연관된 충돌 회피 기법 등을 처리한다. 또한, 장면의 변경으로부터 게임 객체들의 일관된 의사 결정력을 가능하게 한다. 본 논문에서는 규칙기반 행동 제어가 게임 객체의 시뮬레이션을 안내하기 위해 디자인되어졌다. 시각적 요소들로 구성된 에이전트 상태 결정 네트워크는 정보전달과 게임 객체들 사이의 현상태를 추론할 수 있다. 이들 기법들은 실시간으로 게임 객체들간의 동작 상태 변이를 체크하고 모니터링 할 수 있다. 마지막으로 간단한 사례 연구 예와 함께 제어 기법의 타당성을 제시한다.

해외 출국에 영향을 미치는 온라인 미디어 효과 분석: 아시아 5개국을 중심으로 (Analyzing the Effect of Online media on Overseas Travels: A Case study of Asian 5 countries)

  • 이혜인;문현실;김재경
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.53-74
    • /
    • 2018
  • 해외 시장 의존형 경제구조를 지닌 우리나라에서 관광산업은 국가경제에 중요한 산업으로 이를 육성하기 위해 정확한 관광 수요 예측이 필요하다. 그에 따라 많은 연구들이 출국 수요를 예측하기 위해 노력해왔으며 출국수요에 영향을 미치는 요인에 대해 다각도로 연구가 이루어져 왔다. 특히 정보기술의 발전으로 최근에는 출국자들의 출국지 선택 등 관광객의 의사결정에 온라인 뉴스, 소셜 네트워크 서비스 등의 온라인 미디어가 많은 영향을 끼치고 있다. 이에 본 연구는 온라인 미디어가 발생시키는 구전 효과가 출국 수요에 미치는 영향을 살펴보고 그 영향 관계를 규명하고자 하였다. 온라인 미디어는 쉽게 접근이 가능하고 공유가 활발하다는 측면에서 구전 효과가 발생되어 사용자들의 의사결정에 영향을 주고 있다. 이를 위해 본 연구에서는 온라인 미디어를 공적 미디어인 뉴스와 사적 미디어인 블로그로 구분하였으며 실제 아시아 5개국의 출국자 수에 이들 미디어가 미치는 영향 관계를 패널 모형을 통해 분석하였다. 그 결과, 온라인 뉴스의 구전 효과는 출국자 수에 부정적인 영향을 미치지만 블로그의 경우 긍정적 영향 관계를 보였다. 따라서 향후 출국 수요 예측에 있어 온라인 미디어의 구전 효과를 반영해야 하며 이는 미디어의 종류에 따라 차별적으로 적용해야 함을 시사한다. 또한 각 국가별로 온라인 미디어의 특성에 따라 미치는 영향 관계가 차이가 있음을 분석하였다. 즉, 출국 국가에 따라 온라인 미디어의 영향력이 다름에 따라 국가별로 차별적인 예측 및 관리 모형이 필요하다. 본 연구 결과를 통해 관광산업종사자들의 국가와 미디어별 온라인 미디어 기반의 마케팅 전략 수립에 도움을 줄 수 있으리라 기대된다.