• Title/Summary/Keyword: Intelligent Police Drone

Search Result 2, Processing Time 0.014 seconds

Smart Drone Police System: Development of Autonomous Patrol and Real-time Activation System Based on Big Data and AI

  • Heo Jun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.168-173
    • /
    • 2024
  • This paper proposes a solution for innovating crime prevention and real-time response through the development of the Smart Drone Police System. The system integrates big data, artificial intelligence (AI), the Internet of Things (IoT), and autonomous drone driving technologies [2][5]. It stores and analyzes crime statistics from the Statistics Office and the Public Prosecutor's Office, as well as real-time data collected by drones, including location, video, and audio, in a cloud-based database [6][7]. By predicting high-risk areas and peak times for crimes, drones autonomously patrol these identified zones using a self-driving algorithm [5][8]. Equipped with video and voice recognition technologies, the drones detect dangerous situations in real-time and recognize threats using deep learning-based analysis, sending immediate alerts to the police control center [3][9]. When necessary, drones form an ad-hoc network to coordinate efforts in tracking suspects and blocking escape routes, providing crucial support for police dispatch and arrest operations [2][11]. To ensure sustained operation, solar and wireless charging technologies were introduced, enabling prolonged patrols that reduce operational costs while maintaining continuous surveillance and crime prevention [8][10]. Research confirms that the Smart Drone Police System is significantly more cost-effective than CCTV or patrol car-based systems, showing a 40% improvement in real-time response speed and a 25% increase in crime prevention effectiveness over traditional CCTV setups [1][2][14]. This system addresses police staffing shortages and contributes to building safer urban environments by enhancing response times and crime prevention capabilities [4].

Comparison of Deep-Learning Algorithms for the Detection of Railroad Pedestrians

  • Fang, Ziyu;Kim, Pyeoungkee
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2020
  • Railway transportation is the main land-based transportation in most countries. Accordingly, railway-transportation safety has always been a key issue for many researchers. Railway pedestrian accidents are the main reasons of railway-transportation casualties. In this study, we conduct experiments to determine which of the latest convolutional neural network models and algorithms are appropriate to build pedestrian railroad accident prevention systems. When a drone cruises over a pre-specified path and altitude, the real-time status around the rail is recorded, following which the image information is transmitted back to the server in time. Subsequently, the images are analyzed to determine whether pedestrians are present around the railroads, and a speed-deceleration order is immediately sent to the train driver, resulting in a reduction of the instances of pedestrian railroad accidents. This is the first part of an envisioned drone-based intelligent security system. This system can effectively address the problem of insufficient manual police force.