• Title/Summary/Keyword: Intelligent Mobile Robot

Search Result 455, Processing Time 0.024 seconds

Object Directive Manipulation Through RFID

  • Chong, Nak-Young;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2731-2736
    • /
    • 2003
  • In highly informative, perception-rich environments that we call Omniscient Spaces, robots interact with physical objects which in turn afford robots the information showing how the objects should be manipulated. Object manipulation is commonly believed one of the most basic tasks in robot applications. However, no approaches including visual servoing seem satisfactory in unstructured environments such as our everyday life. Thus, in Omniscient Spaces, the features of the environments embed themselves in every entity, allowing robots to easily identify and manipulate unknown objects. To achieve this end, we propose a new paradigm of the interaction through Radio Frequency Identification (RFID). The aim of this paper is to learn about RFID and investigate how it works in object manipulation. Specifically, as an innovative trial for autonomous, real-time manipulation, a likely mobile robot equipped with an RFID system is developed. Details on the experiments are described together with some preliminary results.

  • PDF

A Control for Obstacle Avoidance with Steering and Velocity of a Vehicle Using Fuzzy (퍼지를 이용한 Vehicle의 조향각 및 속력을 고려한 충돌회피 제어)

  • Woo, Ji-Min;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.182-189
    • /
    • 1999
  • In this paper, we present an ultrasonic sensor based path planning method using fuzzy logic for obstacle avoidance of an intelligent vehicle in unknown environments. Generally, Robot navigation in unknown terrains is a very complex task difficult to control because of the great amount of imprecise and ambiguous sensor information that has to be considered. In this case, fuzzy logic can satisfactorily deal with such information in quite efficient manner. In this study, we propose two fuzzy logic controller which is composed of steering controller and velocity controller respectively. Our object is to develop a fuzzy controller that can enable a mobile robot to navigate from a start point to a goal point without collisions, in the least possible travel time. The ability and effectiveness for the proposed algorithm will be demonstrated by simulation and expeiment.

  • PDF

A Study on Path Planning and Navigation of Autonomous Mobile Robot (자율 이동 로봇의 경로계획과 주행)

  • Kwack, Sang-Feel;Choi, Byung-Jae;Yoo, Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.55-60
    • /
    • 2006
  • 지능형 로봇이 성장 동력 산업으로 선정되면서 국가적인 관심이 지능형 로봇산업에 모이고 있다. 지능형 로봇의 분야에서 있어 자율 이동 로봇에 관한 연구는 중요한 이슈가 되고 있다. 주어진 환경에서 환경을 인식하고, 얻어진 정보에 따라 효율적인 주행을 하기 위해 환경지도를 구성한다. 구성된 환경지도를 기반으로 목표지점을 향한 광역경로 계산을 수행하고, 얻어진 경로를 따라 이동함으로써 목표점에 이르게 된다. 본 논문에서는 퍼지 환경 지도를 제안하고, 퍼지 환경지도로부터 최단시간 광역 경로를 계산하는 알고리즘을 소개하며, 주행 제어를 위한 퍼지 제어기를 제안한다.

A Framework for Cognitive Agents

  • Petitt, Joshua D.;Braunl, Thomas
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.229-235
    • /
    • 2003
  • We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-board sensors, including vision, and does not rely on global positioning systems The on-board embedded controller is sufficient to analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, map generation, or providing intelligent group behavior. Not being limited to playing the game of soccer and being completely autonomous, we are also looking at a number of other interesting scenarios. The robots can communicate with each other, e.g. for exchanging positions, information about objects or just the local states they are currently in (e.g. sharing their current objectives with other robots in the group). We are particularly interested in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • 변광섭;허광승;박창현;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.292-295
    • /
    • 2003
  • 로봇의 기능이 다양해지며 복잡해지고 있다 주위의 환경을 감지하는 센서로는 거리정보 뿐만이 아니라 영상 정보, 음성 정보까지 이용하고 있다 본 논문에서는 다양한 입력정보를 가지고 로봇을 제어하기 위한 알고리즘으로 2-Layer Fuzzy Control을 제안한다 장애물 회피의 경우에 다수의 초음파 센서를 이용하였는데 이것을 앞쪽, 왼쪽, 오른쪽으로 분류하여 3개의 sub-controller를 가지고 퍼지 추론을 한 다음 2단계에서는 이 3개의 sub-controller의 출력으로 조합된 퍼지 추론을 하여 통합적인 추론을 한다 본 논문에서는 2-Layer Fuzzy Controller와 비슷한 구조를 갖는 Hierarchical Fuzzy Controller와 성능비교를 하였으며 Robot following에도 적용하여 각각에 대한 시뮬레이션과 실험을 통해 확인한다.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

Object Search Algorithm under Dynamic Programming in the Tree-Type Maze

  • Jang In-Hun;Lee Dong-Hoon;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • This paper presents the target object search algorithm under Dynamic Programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation of Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved whether the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using our real robot.

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.

Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method (파티클 필터 방법을 이용한 특징점과 로봇 위치의 동시 추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • This paper describes a SLAM method which estimates landmark locations and robot pose simultaneously. The particle filter can deal with nonlinearity of robot motion as well as the non Gaussian property of robot motion uncertainty and sensor error. The state to be estimated includes the locations of landmarks in addition to the robot pose. In the experiment, four beacons which transmit ultrasonic signal are used as landmarks. The robot receives the ultrasonic signals from the beacons and detects the distance to them. The method uses rang scanning sensor to build geometric feature of the environment. Since robot location and heading are estimated by the particle filter, the scanned range data can be converted to the geometric map. The performance of the method is compared with that of the deadreckoning and trilateration.

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF