• Title/Summary/Keyword: Intelligent Medical Expert System

Search Result 24, Processing Time 0.019 seconds

EXPERT KNOWLEDGE GATING MECHANISM IN THE HIERARCHICAL MODULAR SYSTEM

  • Shim, Jeong-Yon;Hong, You-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.288-291
    • /
    • 2003
  • For the purpose of building the more efficient knowledge learning system, it is very important to make a good structure of the knowledge system first of all. The well designed knowledge system can make the stored knowledge to be easily accessed for knowledge acquisition and extraction. Expert knowledge can also play a good role for controlling. Accordingly, in this paper we propose the Hierarchical modular system with expert knowledge gating mechanism. This system consists of the mechanisms for knowledge acquisition, constructing the associative memory, knowledge inference and extraction according to the expert knowledge gating mechanism. We applied this system to the medical diagnostic area for classifying Virus(coxackie virus, echovirus, cold), Rhinitis(Nonallergic, allergic) and tested with symptom data

  • PDF

Medical Data Base Controlled By Medical Knowledge Base

  • Chernyakhovskaya, Mery Y.;Gribova, Valeriya V.;Kleshchev, Alexander S.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.343-351
    • /
    • 2001
  • World practice is evidence of that computer systems of an intellectual support of medical activities bound up with examination of patients, their diagnosis, therapy and so on are the most effective means for attainment of a high level of physician\`s qualification. Such systems must contain large knowledge bases consistent with the modern level of science and practice. To from large knowledge bases for such systems it is necessary to have a medical ontology model reflecting contemporary notions of medicine. This paper presents a description of an observation ontology, knowledge base for the physician of general tipe, architecture, functions and implementation of problem independent shell of the system for intellectual supporting patient examination and mathematical model of the dialog. The system can be used by the following specialist: therapeutist, surgeon, gynecologist, urologist, otolaryngologist, ophthalmologist, endocrinologist, neuropathologist and immunologist. The system supports a high level of examination of patients, delivers doctors from routine work upon filling in case records and also automatically forms a computer archives of case records. The archives can be used for any statistical data processing, for producing accounts and also for debugging of knowledge bases of expert systems. Besides that, the system can be used for rise of medical education level of students, doctors in internship, staff physicians and postgraduate students.

  • PDF

Design and Implementation of Intelligent Medical Service System Based on Classification Algorithm

  • Yu, Linjun;Kang, Yun-Jeong;Choi, Dong-Oun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.92-103
    • /
    • 2021
  • With the continuous acceleration of economic and social development, people gradually pay attention to their health, improve their living environment, diet, strengthen exercise, and even conduct regular health examination, to ensure that they always understand the health status. Even so, people still face many health problems, and the number of chronic diseases is increasing. Recently, COVID-19 has also reminded people that public health problems are also facing severe challenges. With the development of artificial intelligence equipment and technology, medical diagnosis expert systems based on big data have become a topic of concern to many researchers. At present, there are many algorithms that can help computers initially diagnose diseases for patients, but they want to improve the accuracy of diagnosis. And taking into account the pathology that varies from person to person, the health diagnosis expert system urgently needs a new algorithm to improve accuracy. Through the understanding of classic algorithms, this paper has optimized it, and finally proved through experiments that the combined classification algorithm improved by latent factors can meet the needs of medical intelligent diagnosis.

RDB-based Automatic Knowledge Acquisition and Forward Inference Mechanism for Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.743-748
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database (RDB) and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert system. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently. and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF

Design and Implementation of an Intelligent Medical Expert System for TMA(Tissue Mineral Analysis) (TMA 분석을 위한 지능적 의학 전문가 시스템의 설계 및 구현)

  • 조영임;한근식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.137-152
    • /
    • 2004
  • Assesment of 30 nutritional minerals and 8 toxic elements in hair are very important not only for determining adequacy, deficiencies and unbalance, but also for assessing their relative relationships in the body. A test has been developed that serves this purpose exceedingly well. This test is known as tissue mineral analysis(TMA). TMA is very popular method in hair mineral analysis for health care professionals in over 46 countries' medical center. However, there are some problems. First, they do not have database which is suitable for korean to do analyze. Second, as the TMA results from TEI-USA is composed of english documents and graphic files prohibited to open, its usability is very low. Third, some of them has low level database which is related to TMA, so hairs are sent to TEI-USA for analyzing and medical services. it bring about an severe outflow of dollars. Finally, TMA results are based on the database of american health and mineral standards, it is possibly mislead korean mineral standards. The purposes of this research is to develope the first Intelligent Medical Expert System(IMES) of TMA, in Korea, which makes clear the problems mentioned earlier IMES can analyze the tissue mineral data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy rule base and hence analyze the complex data from Korean database by fuzzy inference methods. Pilot test of this systems are increased of business efficiency and business satisfaction 86% and 92% respectively.

Development of Expert Systems based on Dynamic Knowledge Map and DBMS (동적지식도와 데이터베이스관리시스템 기반의 전문가시스템 개발)

  • Jin Sung, Kim
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.568-571
    • /
    • 2004
  • In this study, we propose an efficient expert system (ES) construction mechanism by using dynamic knowledge map (DKM) and database management systems (DBMS). Generally, traditional ES and ES developing tools has some limitations such as, 1) a lot of time to extend the knowledge base (KB), 2) too difficult to change the inference path, 3) inflexible use of inference functions and operators. First, to overcome these limitations, we use DKM in extracting the complex relationships and causal rules from human expert and other knowledge resources. Then, elation database (RDB) and its management systems will help to transform the relationships from diagram to relational table. Therefore, our mechanism can help the ES or KBS (Knowledge-Based Systems) developers in several ways efficiently. In the experiment section, we used medical data to show the efficiency of our mechanism. Experimental results with various disease show that the mechanism is superior in terms of extension ability and flexible inference.

  • PDF

Implementation of an interval Based expert system for diagnoisis of Oriental Traditional Medicine

  • Phuong, Nguyen-Hoang;Duong, Uong-Huong;Kwak, Yun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.486-495
    • /
    • 2001
  • This paper describes an implementation of the interval based expert system for syndrome differential diagnosis of Oriental Traditional Medicine (OTM). An approximate reasoning model using fuzzy logic for syndrome differential diagnosis is proposed. Based on this model, we implemented the system for diagnosing Eight rule diagnosis, organ diagnosis and then final differential syndrome of OTM. After carrying out inference process, the system will provide patient\`s syndromes differentiation diagnosis in the intervals and will give the explanation, which helps the user to understand the obtained conclusions.

  • PDF

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

Dynamic Knowledge Map and RDB-based Knowledge Conceptualization in Medical Arena (동적지식도와 관계형 데이터베이스 기반의 의료영역 지식 개념화)

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.111-114
    • /
    • 2004
  • Management of human knowledge is an interesting concept that has attracted the attention of philosophers for thousands of years. Artificial intelligence and knowledge engineering has provided some degree of rigor to the study of knowledge systems and expert systems(ES) re able to use knowledge to solve the problems and answer questions. Therefore, the process of conceptualization and inference of knowledge are fundamental problem solving activities and hence, are essential activities for solving the problem of software ES construction Especially, the access to relevant, up-to-date and reliable knowledge is very important task in the daily work of physicians and nurses. In this study, we propose the conceptualization and inference mechanism for implicit knowledge management in medical diagnosis area. To this purpose, we combined the dynamic knowledge map(KM) and relational database(RDB) into a dynamic knowledge map(DKM). A graphical user-interface of DKM allows the conceptualization of the implicit knowledge of medical experts. After the conceptualization of implicit knowledge, we developed an RDB-based inference mechanism and prototype software ES to access and retrieve the implicit knowledge stored in RDB. Our proposed system allows the fast comfortable access to relevant knowledge fitting to the demands of the current task.

  • PDF