• 제목/요약/키워드: Intelligent Learning System

검색결과 1,135건 처리시간 0.026초

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로 (Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products)

  • 박도형;정재권;정여진;이동원
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.1-23
    • /
    • 2014
  • 시장 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로 정의할 수 있다. 정확한 시장 예측은 기업의 입장에서 새로운 제품의 도입시기 결정, 제품 설계, 생산계획 수립, 마케팅 전략 수립 등에 활용됨으로써 경영활동에 있어 효율적인 의사결정을 내릴 수 있게 하고, 정부의 입장에서는 발전 가능성이 있는 분야에 국가예산을 더 배분할 수 있는 효율적인 예산수립이 가능하게 한다. 본 연구는 정보통신기술(Information and Communication Technology: ICT) 분야의 제품 및 서비스에 대해서 과거의 시계열 자료를 이용하여 시장 성장곡선을 도출하고, 성장패턴이 비슷한 그룹으로 분류하여, 산업 내 시장에 대해 이해하고, 제품들의 미래 전망을 예측하는 데 목적이 있다. 다양한 아이템들을 통일되고 일관적인 방법으로 예측하기 위하여, 로지스틱 모형, 곰페르츠 모형, Bass 모형의 세 가지 전통적인 성장모형과 로지스틱 모형이나 곰페르츠 모형에서 도출되는 잠재시장 크기를 Bass 모형에 결합시킨 두 가지 하이브리드 성장모형을 개발하여 비교 분석하였다. 데이터 설명력이 우수한 로지스틱 + Bass 모형을 최적의 모형으로 선정하여 ICT 제품 및 서비스들 각각의 시장 성장곡선 모수를 확인하였다. 도출된 모수를 데이터로 하여, 자기조직화 지도 알고리즘을 통해, 5개의 의미 있는 영역으로 구분된 시장 성장패턴 지도가 구축되었는데, 각 영역별로 차별화된 특징과 성장패턴을 가지고 있었다. 본 연구에서 제안한 프로세스 및 시스템은 산업 시장 분석 시스템의 수요 예측 기능으로 활용될 수 있으며, ICT 산업뿐만 아니라 다양한 산업 및 분야에도 적용 가능할 것으로 기대된다.

시스템적인 군집 확인과 뉴스를 이용한 주가 예측 (Predicting stock movements based on financial news with systematic group identification)

  • 성노윤;남기환
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.1-17
    • /
    • 2019
  • 빅데이터 시대에 정보의 양이 급증하고, 그중 많은 부분을 차지하는 문자열 정보를 정량화하여 의미를 찾아 낼 수 있는 인공지능 방법론이 함께 발전하면서, 텍스트 마이닝을 통해 주가 예측에 적용해 온라인 뉴스로 주가를 예측하려는 시도가 다양해지고 있다. 이러한 주가 예측의 방법은 대개 예측하고자 하는 기업의 뉴스로 주가를 예측하는 방식이다. 하지만 특정 회사의 뉴스만이 그 회사의 주가에 영향을 주는 것이 아니라, 그 회사와 관련성이 높은 회사들의 뉴스 또한 주가에 영향을 줄 수 있다. 그러나 관련성이 높은 기업을 찾는 것은 시장 전반의 공통적인 영향과 무작위 신호 때문에 쉽지 않다. 따라서 기존 연구들은 주로 미리 정해진 국제 산업 분류 표준에 기반을 둬 관련성이 높은 기업을 찾았다. 하지만 최근 연구에 따르면, 국제 산업 분류 표준은 섹터에 따라 동질성이 다르며, 동질성이 낮은 섹터는 그들을 모두 함께 고려하여 주가를 예측하는 것이 성능에 악영향을 줄 수 있다는 한계점을 가진다. 이러한 한계점을 극복하기 위해, 본 논문에서는 주가 예측 연구에서 처음으로 경제물리학에서 주로 사용되는 무작위 행렬 이론을 사용하여 시장 전반 효과와 무작위 신호를 제거하고 군집 분석을 시행하여 관련성이 높은 회사를 찾는 방법을 제시하였다. 또한, 이를 기반으로 관련성이 높은 회사의 뉴스를 함께 고려하며 다중 커널 학습을 사용하는 인공지능 모형을 제시한다. 본 논문의 결과는 무작위 행렬 이론을 통해 시장 전반의 효과와 무작위 신호를 제거하여 정확한 상관 계수를 찾아 군집 분석을 시행한다면 기존 연구보다 더 좋은 성능을 보여 준다는 것을 보여준다.

양자 간 대화 상황에서의 화자인식을 위한 문장 시퀀싱 방법을 통한 자동 말투 인식 (Automatic Speech Style Recognition Through Sentence Sequencing for Speaker Recognition in Bilateral Dialogue Situations)

  • 강가람;권오병
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.17-32
    • /
    • 2021
  • 화자인식은 자동 음성시스템에서 중요한 기능을 담당하며, 최근 휴대용 기기의 발전 및 음성 기술, 오디오 콘텐츠 분야 등이 계속해서 확장됨에 따라 화자인식 기술의 중요성은 더구나 부각 되고 있다. 이전의 화자인식 연구는 음성 파일을 기반으로 화자가 누구인지 자동으로 판정 및 정확도 향상을 위한 목표를 가지고 진행되었다. 한편 말투는 중요한 사회언어학적 소재로 사용자의 사회적 환경과 밀접하게 관련되어 있다. 추가로 화자의 말투에 사용되는 종결어미는 문장의 유형을 결정하거나 화자의 의도, 심리적 태도 또는 청자에 대한 관계 등의 기능과 정보를 가지고 있다. 이처럼 종결어미의 활용형태는 화자의 특성에 따라 다양한 개연성이 있어 특정 미확인 화자의 종결어미의 종류와 분포는 해당 화자를 인식하는 것에 도움이 될 것으로 보인다. 기존 텍스트 기반의 화자인식에서 말투를 고려한 연구가 적었으며 음성 신호를 기반으로 한 화자인식 기법에 말투 정보를 추가한다면 화자인식의 정확도를 더욱 높일 수 있을 것이다. 따라서 본 연구의 목적은 한국어 화자인식의 정확도를 개선하기 위해 종결어미로 표현되는 말투(speech style) 정보를 활용한 방법을 제안하는 것이다. 이를 위해 특정인의 발화 내용에서 등장하는 종결어미의 종류와 빈도를 활용하여 벡터값을 생성하는 문장 시퀀싱이라는 방법을 제안한다. 본 연구에서 제안한 방법의 우수성을 평가하기 위해 드라마 대본으로 학습 및 성능평가를 수행하였다. 본 연구에서 제안한 방법은 향후 실존하는 한국어 음성인식 서비스의 성능 향상을 위한 수단으로 사용될 수 있으며 지능형 대화 시스템 및 각종 음성 기반 서비스에 활용될 것을 기대한다.

부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로 (A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products)

  • 김동성;김기태;김종우;박성기
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.93-108
    • /
    • 2014
  • 기업 의사 결정 지원을 위하여 거래 데이터를 다양한 관점에서 분석하고 활용하려는 노력과 관심들이 증가하고 있다. 이러한 노력들은 고객 관리나 마케팅에만 국한되는 것이 아니라 부정행위에 대한 감시와 탐지를 목적으로도 다양한 분석 방안들이 연구되고 있다. 부정행위는 기술의 발전을 악용하여 다양한 형태로 진화하고 있으며, 이에 따라 목적에 맞는 부정탐지 방안 연구와 적용을 통하여 탐지 효용의 극대화를 위한 노력의 필요성이 증가하고 있다. 이러한 연구 동향의 일환으로 본 연구에서는 대용량 거래 데이터가 저장 관리되고 있는 국내 최대 농수산물 유통 시장의 2008년부터 2010년까지 상장예외품목의 거래 가격을 분석하여 부정 탐지 규칙을 도출하였으며, 전문가 검증을 통하여 도출 된 규칙의 신뢰성을 확보하였다. 본 연구의 주요 부정거래 분석 방안으로는 정상적인 데이터들은 발생 확률이 높은 반면에 특이한 데이터들의 발생 확률은 낮다고 가정하는 통계적 접근을 통한 이상치 식별 방안을 활용하였다. 이에 따라 부정거래 분석 별로 정의 된 Z-Score 값보다 클 경우 부정거래 탐지 대상이 된다. 다만 상장예외품목 거래의 경우 취급 가능한 중도매인의 수가 제한되어 있으며, 일반적인 상장품목의 거래보다 거래량이 적기 때문에 소수의 이상치가 품목의 평균에 미치는 영향이 크다. 그 예로 다른 소수의 중도매인들이 해당 품목을 정상적인 가격에 거래하였더라도, 특정한 중도매인 한 명이 지나치게 비정상적인 가격에 거래할 경우 모든 거래들이 부정거래로 탐지 될 가능성도 있다. 이러한 문제를 해결하기 위하여 기존의 Z-Score의 개념을 활용하여 수정된 Z-Score(Self-Eliminated Z-Score)를 사용하였다. 또한 부정 유형별 탐지 규칙 관리와 활용을 위한 시스템 프로토타입(prototype) 개발을 수행하였다. 이를 통하여 실제 부정거래 탐지 업무에 적용할 수 있는 효과적인 방안을 제시하였고, 농수산 유통시장의 공정성 및 투명성 확보를 위한 관리 감독의 기능 강화가 가능할 것이다.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.