• Title/Summary/Keyword: Intelligent CNC

Search Result 36, Processing Time 0.025 seconds

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

Intelligent NURBS Surface Interpolator with Online Tool-Path Planning (온라인 방식의 지능형 NURBS 곡면 보간기)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.

  • PDF

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

Development of High Speed/Intelligent Machining System by PLUG/PLAY Method (PLUG/PLAY 방식 고속 지능형 가공 시스템의 연구)

  • 윤원수;김찬봉;권용찬;한기상;양희구;김세광;김주한;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.483-488
    • /
    • 2000
  • This study aims at developing the high speed/intelligent machining system using the plug/play method of an open architecture controller. The plug/play technology by the application Specific Function (ASF), can readily implement the open architecture controller into various machining system or other automatic devices. The plug/play method integrates the ASF, visual builder, controller OS technology. This study, as an example, presents a schematic diagram for integration of an open architecture CNC and individual component technology for the high speed/intelligent machining system.

  • PDF

STEP based NC for Manufacturing System (STEP-NC를 기반으로 하는 생산 시스템)

  • 김선호;김동훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.41-50
    • /
    • 2000
  • NC(Numerical Control)는 1949년 미 공군이 Parson (Fig. 1 (a))이라는 사람에게 프로펠러 (Propeller)용 블레이드(Blade)의 윤곽을 검사하기 위한 판 게이지(Gauge)(Fig. 1 b)) 개발을 의뢰한 것이 계기가 되어 발명되었다. 이후, 신시나티 미라크론(Cincinati Miracle)이라는 공작기계 업체가 NC 사업에 참여하게 되고, 1952년 최초로 MIT(Massachusetts Institute of Technology)의 서보기구연구소(Servo-mechanism laboratory)에 의해 NC 공작기계가 탄생(Fig. 1 (c)) 되었다.(중략)

  • PDF

Fuzzy Model for controlling of Surface Roughness using End-Mill in Machining (엔드밀을 이용한 기계가공에서 표면거칠기 제어를 위한 퍼지 모델)

  • 김흥배;이우영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.69-73
    • /
    • 2001
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee surface roughness regulation. This paper presents a fuzzy controller which can regulate surface roughness in milling process using end-mill under varying cutting condition. The fuzzy control rules are established from operator experience and expert knowledge about the process dynamics. regulation which increases productivity and tool life is achieved by adjusting feed-rate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted CNC milling machine. The result of experiments show that the proposed fuzzy controller has a good surface roughness regulation capability in spite of the variation of cutting conditions.

  • PDF

A Study on PC-NC based Machine Agent System (PC-NC기반 Machine Agent System에 관한 연구)

  • 정병수;강무진;정순철;배명한;김성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.636-640
    • /
    • 2002
  • In contrast to conventional CNC, PC-NC opens a new era for machine tools to be more intelligent. For instance, machine tool with PC-NC can be a machine agent system with capability of reacting autonomously to changing operating conditions. This paper introduces a concept of intelligent machine agent system, composed of machine agent and cell manager. Machine agent performs the functions such as process monitoring, diagnosis, maintenance management, condition assessment and schedule negotiation, while cell manager coordinates the negotiation process among multiple machine agents.

  • PDF

Development of ISO14649 Compliant CNC Milling Machine Operated by STEP-NC in XML Format

    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.27-33
    • /
    • 2003
  • G-code, another name of ISO6983, has been a popular commanding language for operating machine tools. This G-code, however, limits the usage of today's fast evolving high-performance hardware. For intelligent machines, the communications between machine and CAD/CAM departments become important, but the loss of information during generating G-code makes the production department isolated. The new standard for operating machine tools, named STEP-NC is just about to be standardized as ISO14649. As this new standard stores CAD/CAM information as well as operation commands of CNC machines, and this characteristic makes this machine able to exchange information with other departments. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other prototypes of STEP-NC milling machines, this system uses the STEP-NC file in XML file form as data input. This machine loads information from XML file and deals with XML file structure. It is possible for this machine to exchange information to other databases using XML. The STEP-NC milling machines in this research loads information from the XML file, makes tool paths for two5D features with information of STEP-NC, and machines automatically without making G-code. All software is programmed with Visual $C^{++}$, and the milling machine is built with table milling machine, step motors, and motion control board for PC that can be directly controlled by Visual $C^{++}$ commands. All software and hardware modules are independent from each other; it allows convenient substitution and expansion of the milling machine. Example 1 in ISO14649-11 having the full geometry and machining information and example 2 having only the geometry and tool information were used to test the automatic machining capability of this system.

A Study on the Tactile Inspection Planning for OMM based on Turning STEP-NC information (ISO14649) (Turning STEP-NC(ISO14649) 정보를 기반한 접촉식 OMM(On-Machine Measurement) Inspection planning에 대한 연구)

  • IM CHOONG-IL
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.208-216
    • /
    • 2003
  • ISO 14649 (data model for STEP-NC) is a new interface scheme or language for CAD-CAM-CNC chain under established by ISO TC184 SCI. Up to this point, the new language is mainly made for milling and turning, and other processes such as EDM will be completed in the future. Upon completion, it will be used as the international standard language for e-manufacturing paradigm by replacing the old machine-level language, so called M&G code used since 1950's. With the rich information contents included in the new language, various intelligent functions can be made by the CNC as the CNC knows what-to-make and how-to-make. In particular, On-Machine Inspection required for quality assurance in the machine level, can be done based on the information of feature­based tolerance graph. Previously, On-Machine inspection has been investigated mainly for milling operation, and only a few researches were made for turning operation without addressing the data model. In this thesis, we present a feature-based on-machine inspection process by the 4 Tasks: 1) proposing a new schema for STEP-NC data model, 2) converting the conventional tolerance scheme into that of STEP-NC, 3) modifying the tolerance graph such that the tolerance can be effectively measured by the touch probe on the machine, and 4) generating collision-free tool path for actual measurement. Task 1 is required for the incorporation of the presented method in the ISO 14649, whose current version does not much include the detailed schema for tolerance. Based on the presented schema, the tolerance represented in the conventional drafting can be changed to that of STEP-NC (Task 2). A special emphasis was given to Task 3 to make the represented tolerance accurately measurable by the touch probe on the machine even if the part setup is changed. Finally, Task 4 is converting the result of Task into the motion of touch probe. The developed schema and algorithms were illustrated by several examples including that of ISO 14649 Part 12.

  • PDF