• 제목/요약/키워드: Intelligent Agent System

검색결과 512건 처리시간 0.025초

생체 기반 시각정보처리 동작인식 모델링 (A Bio-Inspired Modeling of Visual Information Processing for Action Recognition)

  • 김진옥
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.299-308
    • /
    • 2014
  • 신체 동작, 얼굴 표정과 같이 아주 복잡한 생체 패턴을 인식하고 분류하는 인간의 능력을 모방한 정보처리 컴퓨팅 관련 연구가 최근 다수 등장하고 있다. 특히 컴퓨터비전 분야에서는 인간의 뛰어난 인지 능력 중 상황정보 없이 시각시퀀스에서 동작을 분류하는 기능을 통해 시공간적 패턴 코딩과 빠른 인식 방법을 이해하고자 한다. 본 연구는 비디오 시퀀스상의 동작인식에 생물학적 시각인지과정의 영향을 받은 생체 기반 컴퓨터비전 모델을 제시하였다. 제안 모델은 이미지 시퀀스에서 동작을 검출하고 시각 패턴을 판별하는 데 생체 시각처리과정의 신경망 구조 단계를 반영하였다. 실험을 통해 생체 기반 동작인식 모델이 인간 시각인지 처리의 여러 가지 속성을 고려했을 뿐 아니라 기존 동작인식시스템에 비해 시간 정합성이 뛰어나며 시간 변화에 강건한 분류 능력을 보임을 알 수 있다. 제안 모델은 지능형 로봇 에이전트와 같은 생체 기반 시각정보처리 시스템 구축에 기여할 수 있다.

시멘틱 웹 기반의 비교구매 에이전트를 위한 동적 웹 온톨로지에 대한 연구 (A Study of Dynamic Web Ontology for Comparison-shopping Agent based on Semantic Web)

  • 김수경;안기홍
    • 지능정보연구
    • /
    • 제11권2호
    • /
    • pp.31-45
    • /
    • 2005
  • 본 논문에서는 전자상거래 상점별로 상이하게 정의되고 표현되어 있는 디지털 캠코더에 대한 HTML 페이지의 상품 정보를 래퍼(Wrapper)기술을 이용하여 획득하고 이를 RDF 문서 변환기를 통해 RDF 트리플(triple)과 RDF 문서로 변환하여 디지털 캠코더에 대한 메타데이터 스키마를 설계한다. 설계된 메타데이터 스키마를 기반으로 OWL 웹 온톨로지로 변환하고 이를 관계형 데이터베이스로 구현된 디지털 캠코더(DC: Digital Camcoder) 도메인 온톨로지 저장소(Domain Ontology Repository)에 DCC 지식 베이스 온톨로지 (DCCKBO: DCC Knowledge Based Ontology)로 저장한다. 다음 각 상점의 RDF 트리플과 문서를 DCCKBO와 비교, 매핑 그리고 추론 과정을 통해 최적의 상품 구매 정보를 가진 상점의 DCC 정보를 구매자에게 제공하고, DCCKBO에 저장되어 있는 도메인 온톨로지를 최적의 상품 구매 정보의 내용으로 재 정의하는 동적 웹 온톨로지를 제안하고자 한다.

  • PDF

초임계 공정을 이용한 Thin-walled carbon nanotubes (TWNTs)/아민계 에폭시 첨가제의 복합체 제조 (Study on the Thin-walled carbon nanotubes (TWNTs)/Amine epoxy additive composite via supercritical fluid process)

  • 김용렬;정현택
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.486-491
    • /
    • 2014
  • 본 연구에서는, 유기용매를 사용하지 않는 친 환경적인 건식 공정과 초임계 공정을 이용한 Thin-multiwalled carbon nanotube (TWNTs)/아민계 에폭시 첨가제의 복합체 제조에 관하여 연구를 하였다. 제조된 TWNTs/아민계 에폭시 첨가제의 복합체는 우레탄기반의 비스페놀 A 타입의 에폭시 레진의 경화제로 사용하였다. TWNTs/아민계 에폭시 첨가제의 복합체를 경화제로 사용하여 제조된 에폭시 레진의 열적 성질을 Dynamic mechanical analysis (DMA)를 이용하여 분석 하였으며, 메트릭스상의 carbon nanotube의 높은 분산성은 SEM을 통하여 확인 하였다. 그 결과, 초임계 공정을 이용하여 제조된 에폭시 레진의 열적 성질과 매트릭스내의 carbon nanotube 분산성이 건식 공정을 사용 하였을 때 보다 더욱 증가된 결과를 확인 할 수 있었다.

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

최적 화물 선적을 위한 화주 에이전트 기반의 협상방법론 (A Negotiation Method based on Consignor's Agent for Optimal Shipment Cargo)

  • 김현수;최형림;박남규;조재형
    • 지능정보연구
    • /
    • 제12권1호
    • /
    • pp.75-93
    • /
    • 2006
  • 화주의 선박 선정과정은 선박과 화물의 일정에 따른 1차 선정과 화물을 재선적하여 하나의 단위로 선복을 집중시키는 2차 선정으로 구분된다. 지금까지 3자 물류업체는 이러한 선적업무가 수작업으로 진행됨으로써 비효율성을 초래하였다. 그러므로 본 연구에서는 에이전트 협상을 통해 전체 물류비를 감소시킬 수 있는 방안을 제안하고자 한다. 화물의 집중과 배분을 통해 얻을 수 있는 물류비 절감을 최대화시키기 위해 재고비와 운송비간의 상관관계에 서 최적점을 찾아야 하며 이를 화주간 협상으로 해결할 수 있다. 실험에서는 현업에서 이루어지는 화물 선적방법인 EPDS(Earliest Possible Departure-Date Scheduling)와 LPDS(Latest Possible Departure-Date Scheduling)에 본 협상방법론을 접목하여 SBF(Scheduling Bundle Factor, 선적동시 처리량)에 따른 재고비, 운송비 그리고 물류비등을 도출하고 실험결과를 분석하였다. 분석결과, 에이전트 기반의 협상방법론이 EPDS와 사용될 경우 전체 물류비를 최소화시킬 수 있었다.

  • PDF

일상생활 계획을 위한 스마트폰-사용자 상호작용 기반 지속 발전 가능한 사용자 맞춤 위치-시간-행동 추론 방법 (Smartphone-User Interactive based Self Developing Place-Time-Activity Coupled Prediction Method for Daily Routine Planning System)

  • 이범진;김지섭;류제환;허민오;김주석;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.154-159
    • /
    • 2015
  • 과거 어플리케이션 다양성만 지향하던 사용자의 수요가 최근 스마트폰의 고도화된 센서와 기계학습이 결합된 지능형 어플리케이션으로의 선호로 전향되고 있다. 이러한 경향을 반영하여 본 논문에서는 스마트폰에 축적된 사용자의 라이프로깅 데이터에서 의미있는 정보를 추출하고, 추출한 정보를 통해 사용자의 인지적 행동을 대신 가능한 인지 에이전트(Cognitive Agent)개념의 스마트폰-사용자 상호작용 사용자 맞춤 위치-시간-행동 추론 기법을 제안한다. 제안 방법은 사용자의 라이프로깅데이터를 DPGMM (Dirichlet Process Gaussian Mixture Model) 클러스터링 기법으로 사용자 주요 관심지역 POI(Point of Interest)를 자동으로 추출하고, 평생학습이 가능한 강화학습의 한 종류인 POMDP(Partially Observable Markov Decision Process)를 사용하여 사용자의 위치-시간-행동을 추론 한다. 제안 방법으로 구현한 사용자 맞춤 일과 계획 시스템의 시간별 사용자 일과 추론 결과는 70%이상의 성능을 보였으며, 하루 일과 계획 지능형 서비스의 새로운 방향을 제시하고 있다.

차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발 (Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web)

  • 송용욱;홍준석;김우주;윤숙희;이성규
    • 지능정보연구
    • /
    • 제12권2호
    • /
    • pp.67-81
    • /
    • 2006
  • 현재의 웹이 HTML을 바탕으로 인간 사용자와의 인터페이스에 초점을 맞추고 있는데 비하여, 차세대 웹은 XML 및 XML 기반 각종 표준들을 바탕으로 소프트웨어 에이전트간의 상호작용에 초점을 맞추어 나가고 있다. 차세대 웹에서 소프트웨어 에이전트의 두뇌 역할을 수행하기 위하여 추론엔진은 차세대 웹의 표준 언어인 시맨틱 웹 - (Semantic Web)을 충실히 이해할 수 있어야 한다. 이를 위한 기초 작업의 일환으로 OWL(Web Ontology Language) 과 RuleML(Rule Markup Language)을 조합한 SWRL(Semantic Web Rule Language)이 W3C에 제안된 바 있다. 본 연구에서는 SWRL을 규칙 표현 방법으로 사용하고, OWL을 사실 표현 방법으로 사용하는 역방향 추론엔진인 SMART-B(SeMantic web Agent Reasoning Tools -Backward chaining inference engine)를 개발하고자 하였다. 이를 위하여 SWRL 기반 역방향 추론을 위한 요구 기능을 분석하고, 기존 역방향 추론 알고리즘에 차세대 시맨틱 웹의 요구 기능을 반영한 역방향 추론 알고리즘을 설계하였다. 또한, 유비쿼터스 환경에서의 각종 플랫폼간의 독립성과 이식성을 확보하고 기기간의 성능 차이를 극복할 수 있도록 사실 베이스 및 규칙 베이스의 관리도구와 역방향 추론 엔진 등을 Java 프로그래밍 언어를 이용하여 단위 컴포넌트의 형태로 개발하였다.

  • PDF

링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구 (Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation)

  • 오창환;원민수;송태진
    • 한국ITS학회 논문지
    • /
    • 제19권5호
    • /
    • pp.70-81
    • /
    • 2020
  • GPS가 탑재된 차내 단말기, 스마트폰에서 방대하게 수집되는 초 단위 위치(위·경도) 데이터는 교통 분야에 다양하게 활용되고 있다. 이러한 데이터는 공공의 교통관련 의사결정자들과 교통서비스를 개발·제공하는 민간회사들에게 운전자들의 행태와 교통흐름을 미시적으로 파악할 수 있게 한다. 특히, 속도 데이터는 통행시간 예측에 주요한 정보로 활용되며, 해상도 높은 데이터 기반의 고차원 서비스 개발에 이용되고 있어 신뢰성있는 정보의 확보가 요구된다. 그럼에도 불구하고 링크별 속도 산출 시 각기 다른 저장, 수집주기 등을 기준으로 사용하고 있어 정보 활용에 있어 신뢰성을 담보하기 어렵다. 본 연구의 목적은 차내 단말기를 장착한 프로브차량 데이터를 수집해 링크 공간평균속도를 산출하고 동일 구간 및 시간대의 영상기반 공간평균속도와 비교분석을 통해 오차율을 도출하는 것이다. 수집주기와 실제 속도 상황에 따른 오차율을 분석한 결과 8초 이내 수집주기에서 95% 신뢰수준을 보였으며 이를 공간평균속도 산출 시 신뢰성확보를 위한 적정 수집 주기로 제안했다. 해당 결과는 향후 커넥티드 환경에서 수집될 핵심 정보들의 신뢰성 확보와 서비스 개발 시 기초 정보로 활용될 것으로 기대해본다.

AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안 (A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff)

  • 한창희;신규용;최성훈;문상우;이치훈;이종관
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.237-246
    • /
    • 2020
  • 본 논문에서는 의사결심 지원체계인 전장관리체계의 지능화를 위해 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 인간처럼 보고 식별도 하고, 자유롭게 움직임을 통해 원하는 위치에 도달하는 모습은 쉽게 이해되거나 실생활에서 체감하고 있는데 비해, 원하는 위치에 도달한 이후 인간 인지 행위 중 가장 중요한 하나인 의사 결심 판단을 구현했다거나 혹은 그러한 예제를 아직은 찾아 볼 수 없는 실정이다. 도착을 원했던 회의실에 인간을 대신해 에이전트가 오기는 했지만 판단을 도와주거나 대신 해주어야 할 임무인 예컨대, 가격 정책을 올릴 것인지 내릴 것인지, 지휘관이 심사숙고하고 있는 예컨대, 역습을 하는 것이 현명한지 아닌지에 대한 판단을 지원해 주지 못하고 있다. 군 지휘 통제의 현상과 현안을 고찰하였고, 각 상황에 대한 판단을 내릴 때 기계참모의 조언이 가능하게하기 위한 많은 양의 데이터 확보가 가능하도록, 현 지휘통제 체계를 변경시킬 방안으로 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 또한 제시한 방안에 대해 기계가 하는 의사결정의 한 예시로써 의사결정 트리 방법론을 적용하였다. 이를 통해 향후 AI 상황 판단 참모가 어떠한 모습으로 우리에게 다가올지에 대한 혜안을 제공하고자 하였다.

지능형 시뮬레이션 모형을 기반으로 한 정보기술 투자 성과 요인 및 전략 도출에 관한 연구 (A study on the Success Factors and Strategy of Information Technology Investment Based on Intelligent Economic Simulation Modeling)

  • 박도형
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.35-55
    • /
    • 2013
  • 최근 기업 경영에 있어 정보기술의 도입 및 전략적인 활용은 선택이 아닌 필수로 자리잡고 있다. 기업의 전략적인 목표와 정보기술 간의 상호 의존은 기업의 생존 및 성장에 중요한 역할을 하고 있으며, 이에 따라 이미 많은 기업이 지속적으로 정보기술에 투자하고 있다. 정보기술 투자 성과 관련해서는 기업 내부의 요인들과 전략들, 기업외부의 고객까지 여러 가지 복합적인 요소들이 서로 상호작용하고 있기 때문에, 각 요인들을 독립적으로 분리하여 정보기술 투자 성과에 미치는 영향력을 분석하는 것이 쉽지 않다. 이에 본 연구는 기존의 연구들을 바탕으로 정보기술 투자성과에 영향을 줄 수 있는 변수들을 도출하여, 각 변수들의 관계를 수리적인 모델링을 통해 단순화시키고, 시뮬레이션 방법론을 이용하여 각 변수들의 변화에 정보기술 투자 성과는 어떻게 달라지는지를 밝혔다. 본 연구의 결과는 정보기술 투자는 서비스의 품질을 증가시켜 경제학적인 성과들에 간접적으로 영향을 주고, 정보기술 투자와 동시에 소비자 잉여는 증가되지만, 큰 투자비용으로 회사의 이익은 감소하게 된다. 그리고 시간이 지남에 따라 품질 증가에 관한 정보가 고객들 사이에 퍼져 나가게 되므로 최종적으로 기업의 수익을 증가시켜준다. 또한, 정보기술 투자 성과 극대화를 위해서는 회사가 제공하는 서비스와 소비자들의 네트워크 효과 등이 고려되어 정보기술 투자 여부를 결정하고, 회사에 맞는 정보기술 투자 전략을 세워야 함을 시뮬레이션 모형을 통해 확인할 수 있었다. 구체적으로, 한 번에 많은 투자를 할 경우는 단기적인 성과는 클 것으로 기대되나, 장기적으로 좋은 성과가 이뤄지지 않는다. 그러나 정보의 확산 속도가 빠르거나 정보의 장벽이 될 수 있는 정보를 받지 못하는 소비자가 적을 경우 단기에 집중 투자 하는 것이 많은 수요를 얻을 수 있다. 또, 여러 번에 걸쳐 투자하는 경우는 적당한 주기를 가지게 될 경우 장기적으로 큰 성과를 낼 수 있음을 확인할 수 있었다. 본 연구는 경제학 모델링과 시뮬레이션을 결합시켜, 각각의 한계를 모두 극복할 수 있는 방법론을 활용했다는 측면과, 정보기술 투자의 성과를 제품 품질의 매개 효과 모형에 적용하여 정보기술 투자와 기업 성과간의 관계를 보여주었다는 측면, 마지막으로 정보기술 투자 전략 및 정보의 확산 효과를 반영하여 정보기술 투자의 성과를 확인할 수 있다는 측면에서 의의가 있다.