• 제목/요약/키워드: Intelligence inverse

검색결과 34건 처리시간 0.019초

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.

사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용 (A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps)

  • 전병국;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.1-18
    • /
    • 2015
  • 협업 필터링은 학계나 산업계에서 우수한 성능으로 인해 많이 사용되는 추천기법이지만, 정량적 정보인 사용자들의 평가점수에만 국한하여 추천결과를 생성하므로 간혹 정확도가 떨어지는 문제가 발생한다. 이에 새로운 정보를 추가로 고려하여, 협업 필터링의 성능을 개선하려는 연구들이 지금까지 다양하게 시도되어 왔다. 본 연구는 최근 Web 2.0 시대의 도래로 인해 사용자들이 구입한 상품에 대한 솔직한 의견을 인터넷 상에 자유롭게 표현한다는 점에 착안하여, 사용자가 직접 작성한 리뷰를 참고하여 협업 필터링의 성능을 개선하는 새로운 추천 알고리즘을 제안하고, 이를 스마트폰 앱 추천 시스템에 적용하였다. 정성 정보인 사용자 리뷰를 정량화하기 위해 본 연구에서는 텍스트 마이닝을 활용하였다. 구체적으로 본 연구의 추천시스템은 사용자간 유사도를 산출할 때, 사용자 리뷰의 유사도를 추가로 반영하여 보다 정밀하게 사용자간 유사도를 산출할 수 있도록 하였다. 이 때, 사용자 리뷰의 유사도를 산출하는 접근법으로 중복 사용된 색인어의 빈도로 산출하는 방안과 TF-IDF(Term Frequency - Inverse Document Frequency) 가중치 합으로 산출하는 2가지 방안을 제시한 뒤 그 성능을 비교해 보았다. 실험결과, 제안 알고리즘을 통한 추천, 즉 사용자 리뷰의 유사도를 추가로 반영하는 알고리즘이 평점만을 고려하는 전통적인 협업 필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인할 수 있었다. 아울러, 중복 사용 단어의 TF-IDF 가중치의 합을 고려했을 때, 단순히 중복 사용 단어의 빈도만을 고려했을 때 보다 조금 더 나은 예측정확도를 얻을 수 있음도 함께 확인할 수 있었다.

증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측 (The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF)

  • 양수연;이채록;원종관;홍태호
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.237-262
    • /
    • 2022
  • 본 연구는 개인투자자들의 투자의사결정에 도움을 주고자, 증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용해 공모주의 상장 5거래일 이후 주식 가격 등락을 예측하는 모델을 제시한다. 연구 표본은 2009년 6월부터 2020년 12월 사이에 신규 상장된 691개의 국내 IPO 종목이다. 기업, 공모, 시장과 관련된 다양한 재무적 및 비재무적 IPO 관련 변수와 증권신고서의 어조를 분석하여 예측했고, 증권신고서의 어조 분석을 위해서 TF-IDF (Term Frequency - Inverse Document Frequency)에 기반한 텍스트 분석을 이용해 신고서의 투자위험요소란의 텍스트를 긍정적 어조, 중립적 어조, 부정적 어조로 분류하였다. 가격 등락 예측에는 로지스틱 회귀분석(Logistic Regression), 랜덤 포레스트(Random Forest), 서포트벡터머신(Support Vector Machine), 인공신경망(Artificial Neural Network) 기법을 사용하였고, 예측 결과 IPO 관련 변수와 증권신고서 어조 변수를 함께 사용한 모델이 IPO 관련 변수만을 사용한 모델보다 높은 예측 정확도를 보였다. 랜덤 포레스트 모형은 1.45%p 높아진 예측 정확도를 보였으며, 인공신공망 모형과 서포트벡터머신 모형은 각각 4.34%p, 5.07%p 향상을 보였다. 추가적으로 모형간 차이를 맥니마 검정을 통해 통계적으로 검증한 결과, 어조 변수의 유무에 따른 예측 모형의 성과 차이가 유의확률 1% 수준에서 유의했다. 이를 통해, 증권신고서에 표현된 어조가 공모주의 가격 등락 예측에 영향을 미치는 요인이라는 것을 확인할 수 있었다.

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.