At the present time when the need for universal artificial intelligence education is expanding and job changes are being made, research and discussion on artificial intelligence liberal arts education for non-majors in universities who experience artificial intelligence as part of their job is insufficient. Although artificial intelligence education courses for non-majors are being operated, they are mainly operated as theory-oriented education on the concepts and principles of artificial intelligence. In order to understand the general concept of artificial intelligence for non-majors, it is necessary to proceed with experiential learning in parallel. Therefore, this study designs artificial intelligence experiential education learning contents of difficulty that can reduce the burden of artificial intelligence classes with interest in learning by considering the characteristics of non-majors. After, we will examine the learning effect of experiential education using App Inventor and the Orange artificial intelligence platform. As a result of analysis based on the learning-related data and survey data collected through the creation of AI-related projects by teams, positive changes in the perception of the need for AI education were found, and AI literacy skills improved. It is expected that it will serve as an opportunity for instructors to lay the groundwork for designing a learning model for artificial intelligence experiential education learning.
The purpose of this study was to verify whether the endorser effect similar to humans can be created in advertising campaigns based on the artificial intelligence endorser. In particular, considering the characteristics of artificial intelligence, a research model was presented by convergence of consumer innovativeness and anthropomorphism. The results of the online survey of 244 respondents showed that expertise of the artificial intelligence endorser has a positive effect on both brand attitude and purchase intention, but not for trustworthiness while it has a positive effect on brand attitude. Also, the effect of consumer innovativeness and anthropomorphism on brand attitude and purchase intention for artificial intelligence was found. The endorser effect was expanded to artificial intelligence, which is an intangible object, and the existing theory and research results were combined to re-verify it. Theoretical and practical implications for artificial intelligence-based products and services were presented.
CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.
Journal of Information Science Theory and Practice
/
v.12
no.3
/
pp.49-62
/
2024
Strategy monitoring is essential for business management and for administrators, including managers and executives, to build a data-driven organization. Having a tool that is able to visualize strategic data is significant for business intelligence. Unfortunately, there are gaps between business users and information technology departments or business intelligence experts that need to be filled to meet user requirements. For example, business users want to be self-reliant when using business intelligence systems, but they are too inexperienced to deal with the technical difficulties of the business intelligence systems. This research aims to create an automatic matching framework between the key performance indicators (KPI) formula and the data in database systems, based on ontology concepts, in the case study of Prince of Songkla University. The mapping data schema with ontology (MapDSOnto) framework is created through knowledge adaptation from the literature review and is evaluated using sample data from the case study. String similarity methods are compared to find the best fit for this framework. The research results reveal that the "fuzz.token_set_ratio" method is suitable for this study, with a 91.50 similarity score. The two main algorithms, database schema mapping and domain schema mapping, present the process of the MapDS-Onto framework using the "fuzz.token_set_ratio" method and database structure ontology to match the correct data of each factor in the KPI formula. The MapDS-Onto framework contributes to increasing self-reliance by reducing the amount of database knowledge that business users need to use semantic business intelligence.
The Journal of Asian Finance, Economics and Business
/
v.8
no.7
/
pp.613-623
/
2021
This study aims to identify the effect of blue ocean leadership style on strategic decision making and it also aims to examine the mediating role of organizational politic and moderating role of emotional intelligence in the Government Link Companies (GLCs) in Malaysia. In order to achieve the objective of the study, a research framework had been developed to establish a relationship among the variables of the study based on resource-based view theory. Questionnaire method was used to collect the data form middle to top level employees in GLCs. All the items in the study's variables were assessed using the 5-point Likert scale. A stratified random sampling technique was used to identify the sample for this study. Data was derived from 135 middle to top level employees, which were involved in decision making process. The data was analyzed using the SPSS and the SmartPLS 3.0 software. This supplemented the theory surrounding blue ocean leadership styles and strategic decision making. The study also identified several avenues for further research by using different research methods and examining the impact of strategic decision making in different contexts.
Models for human cognition currently discussed in cognitive science cannot be appropriate ones. The symbolic model of the traditional artificial intelligence works for reasoning and problem-solving tasks, but doesn't fit for pattern recognition such as letter/sound cognition. Connectionism shows the contrary phenomena to those of the traditional artificial intelligence. Connectionist systems has been shown to be very strong in the tasks of pattern recognition but weak in most of logical tasks. Brooks' situated action theory denies the. notion of representation which is presupposed in both the traditional artificial intelligence and connectionism and suggests a subsumption model which is based on perceptions coming from real world. However, situated action theory hasn't also been well applied to human cognition so far. In emphasizing those characteristics of models I refer those models 'left-brain model', 'right-brain model', and 'robot model' respectively. After I examine those models in terms of substantial items of cognitions- mental state, mental procedure, basic element of cognition, rule of cognition, appropriate level of analysis, architecture of cognition, I draw three arguments of embodiment. I suggest a way of unifying those existing models by examining their theoretical compatability which is found in those arguments.
The purpose of this study is to investigate elementary school teachers' awareness of Artificial Intelligence (AI) and find out how to apply it in elementary science education. The survey was conducted online and involved 95 teachers working in the metropolitan area. The results of this study are as follows. First, teachers need to learn about the general characteristics of AI and how to apply it to education. Second, science classes had the highest preference for AI among elementary school subjects. Third, the preference for AI application by elementary science field was 68.4% for earth and space, 54.7% for exercise and energy, 32.6% for matter, 27.4% for life. Fourth, AI-based Science Education (AISE) teaching- learning strategies were developed based on AI characteristics and the changing perspective of elementary science education, AISE's teaching-learning strategies are five: 'automation', 'individualization', 'diversification', 'cooperation' and 'creativity' and teachers can use them in teaching design, class practice and evaluation stages. Finally, the creative problem-solving Doing Thinking Making Sharing (DTMS) model was devised to implement the creativity strategy in AISE. This model consists of four-steps teaching courses: Doing, Thinking, Making and Sharing based on the empirical learning theory. In the future, follow-up research is needed to verify the effectiveness of this model by applying it to elementary science education.
Journal of the Society of Naval Architects of Korea
/
v.58
no.5
/
pp.281-293
/
2021
Oil and steel prices, which are major pricescosts in the shipbuilding industry, were predicted. Firstly, the error of the moving average line (N=3-5) was examined, and in all three error analyses, the moving average line (N=3) was small. Secondly, in the linear prediction of data through existing theory, oil prices rise slightly, and steel prices rise sharply, but in reality, linear prediction using existing data was not satisfactory. Thirdly, we identified the limitations of linear prediction methods and confirmed that oil and steel price prediction was somewhat similar to actual moving average line prediction methods. Due to the high volatility of major price flows, large errors were inevitable in the forecast section. Through the time series analysis method at the end of this paper, we were able to achieve not bad results in all analysis items relative to artificial intelligence (Prophet). Predictive data through predictive analysis using eight predictive models are expected to serve as a good research foundation for developing unique tools or establishing evaluation systems in the future. This study compares the basic settings of artificial intelligence programs with the results of core price prediction in the shipbuilding industry through time series prediction theory, and further studies the various hyper-parameters and event effects of Prophet in the future, leaving room for improvement of predictability.
This paper aims to inform people how to support each other on social media. It alludes to an architecture for social media discourse and proposes a novel theory of support in social media discourse. It makes a methodological contribution. It combines predominately artificial intelligence with corpus linguistics analysis. It is on a large-scale dataset of anonymised diabetes-related user's posts from the Facebook platform. Log-likelihood and precision measures help with validation. A multi-method approach with Discourse Analysis helps in understanding any potential patterns. People living with Diabetes are found to employ sophisticated high-frequency patterns of device-enabled categories of purpose and content. It is with, for example, linguistic forms of Advice with stance-taking and targets such as Diabetes amongst other interactional ways. There can be uncertainty and variation of effect displayed when sharing information for support. The implications of the new theory aim at healthcare communicators, corpus linguists and with preliminary work for AI support-bots. These bots may be programmed to utilise the language patterns to support people who need them automatically.
This paper introduces deliberative behavior tree using utility theory. The proposed approach combine the strengths of behavior trees and utility theory to implement complex behavior of AI agents in an easier and more concise way. To achieve this goal, we devised and implemented three types of additional behavior tree nodes, which evaluate utility values of its own node or its subtree while traversing and selecting its child nodes based on the evaluated values. In order to validate our approach, we implemented a sample scenario using conventional behavior tree and our proposed deliberative tree respectively. And then we compared and analyzed the simulation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.