본 논문에서는 연결성, 신뢰성, 교통량 제약조건을 만족하는 최소 비용의 소형궤도차량 선로네트워크를 설계하기 위한 유전알고리즘을 제안한다. 소형궤도차량 시스템은 다수의 자동화된 차량들이 공중에 설치된 선로네트워크를 따라 움직이는 신개념 교통 시스템이다. 주어진 역의 위치와 역간 교통량 수요에 대해 최적의 선로네트워크를 구하는 문제는 소형궤도차량 시스템에 관련된 가장 중요한 문제 가운데 하나이다. 본 논문에서는 선로네트워크를 방향성 링크를 갖는 그래프로 표현하고 그 비용과 연결성, 신뢰성, 교통량을 수식화하였다. 이렇게 주어진 네트워크 성능지표를 바탕으로 선로네트워크 설계 문제에 적절한 연산자들로 구성된 유전알고리즘을 제안한다. 이 연산자들은 안정상태 선택 연산자, 수리 알고리즘, 방향성이 있는 돌연변이 연산자를 포함한다. 제안된 유전알고리즘의 적절한 변수를 결정하고 그 성능을 타 알고리즘과 비교하기 위한 실험을 수행하였다. 최대 210개의 링크를 갖는 선로네트워크에 대해 수행된 실험결과는 제안된 유전알고리즘이 적절한 시간 내에 만족스러운 해를 구할 수 있음을 보인다.
물류의 증가로 생산된 제품이 소비자에게 전달되기 전 저장하는 제품 창고의 운영과 유지는 제품원가의 큰 부분을 차지하게 되었다. 취급작업 횟수의 감소, 신속한 출고 작업, 제품의 효율적 관리를 위해 저장설비의 설치, 저장 공간의 추가 확보 등의 시설 투자 방법으로도 이런 문제를 해결 할 수 있지만 기존 저장 공간을 최대한 활용함으로써 취급작업 수를 줄일 수 있다. 저장시설 내에서의 운영방법에는 여러 가지가 있겠지만 저장 공간의 제약이 있기 때문에 제품을 겹쳐 쌓아야 하고 그 경우 반드시 재취급을 고려해야 한다. 재취급 문제는 창고의 취급 효율을 결정짓는 가장 중요한 문제이다. 따라서 창고의 운영 효율을 높이기 위해서는 재취급을 최소화할 수 있는 방법을 고려할 필요가 있다. 본 연구에서는 기대 재취급을 최소화하는 혼적결정 문제를 다루고자 한다. 혼적결정을 위한 최적화 모형을 제시하였고 해를 구하기 위한 유전자 알고리즘을 제시하였다. 이 연구결과는 컨테이너 터미널을 포함하여 재취급이 발생할 수 있는 창고의 운영에 활용될 수 있다.
본 연구는 디지털 마케팅의 구성요인과 앞으로의 흐름을 예측하기 위해 계층적 분석 방법(AHP)을 활용하여 디지털 마케팅 구성 요인간의 상대적 중요도를 도출하고 광고 부문 전문가와 비광고 부문 전문가의 의견을 비교 분석하였다. 연구 결과, 디지털 마케팅 상위요인들의 상대적 중요도는 결합(0.260), 전환(0.259), 최적화(0.243), 기반 기술(0.238)의 순으로 나타났으며 하위요인들의 상대적 중요도는 인공지능과 머신러닝(0.086), 빅데이터(0.085), 콘텐츠 큐레이션(0.060) 순으로 나타났다. 또한, 광고 부문 전문가들은 결합과 최적화의 상대적 중요도가 높은데 반해 비광고 부문 전문가는 전환과 기반기술로 나타나 직무 특성 별 상대적 중요도가 다르다는 것을 확인할 수 있었다. 본 연구는 디지털 마케팅의 전체적인 구성 요인과 중요도를 통해 향후 디지털 마케팅 전략을 수립하는데 유용한 시사점을 제공할 수 있다.
Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.
Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5701-5722
/
2018
The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.
Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.
노후화된 구조물의 균열 검사는 검사원이 직접 현장에서 측량 도구를 사용하여 육안으로 검사를 하는 방식이 대부분이다. 이러한 방식은 전문 작업 인력의 주관성에 크게 의존하게 되고, 많은 시간과 비용이 소모된다. 일관성과 신뢰성 있는 판단을 하기 위해 인공지능 이미지 분류 알고리즘을 활용하고 있다. 2018년부터는 이미지 전처리 단계에서 이미지 증강 기법이 높은 성능 향상을 이끌고 있어 사용되고 있는 추세이다. 본 연구에서는 이미지 증강 기법을 활용하여 콘크리트 구조물 균열에 관한 분석 알고리즘을 개발하고 증강 비율에 따른 정확도와 속도를 비교 측정하여 최적화를 하였다. 그 결과 정확성을 향상시키고 경제성을 감안했을 경우 8배에서 적정한 것으로 나타났다.
신호를 제어하는 방식은기존의 전통적인 수학적 방식을 이용한 최적화를 넘어 이제 인공지능이 본격적으로 활용되기 시작하는 단계까지 발전하였다. 이에 따라 인공지능을 적용하는 방안에 대해 다양한 연구들이 진행되고 있는데, 현행 연구에서는 주로 좋은 교통 상황에 대한 마땅한 고려 없이 간단히 지체도만을 고려하여 보상함수를 설정하는 방식을 주로 채택하고 있다. 그러나 이 경우 현실성이 떨어지는 신호 제어 방식을 인공지능이 학습할 가능성이 존재한다는 문제점을 지닐 뿐더러, 보상 함수에서 좋다고 평가하는 것이 실질적인 서비스 수준의 정의에 부합하지 않음을 확인할 수 있다. 따라서 본 연구에서는 기존의 보상함수 설정 사례를 분석하고, 개선 방향을 제시하고자 한다.
LiDAR는 자율 주행뿐만 아니라 다양한 산업 현장에 적용되어 대상의 크기와 거리를 측정하는 데 사용되고 있다. 이에 더하여 이 센서는 반사된 빛의 양을 바탕으로 반사 강도 영상 또한 제공한다. 이는 측정 대상의 형상에 대한 정보를 제공하여 센서 데이터 처리에 긍정적인 효과를 일으킨다. LiDAR는 고해상도가 될수록 높은 성능을 보장하지만 이는 센서 비용의 증가를 야기하는데, 이 점은 반사 강도 영상에도 해당된다. 높은 해상도의 반사 강도 영상을 취득하기 위해서는 고가의 장비 사용이 필수적이다. 따라서 본 연구에서는 저해상도의 반사 강도 영상을 고해상도의 영상으로 개선하는 인공지능을 개발하였다. 이를 위해서 본 연구에서는 최적의 초해상화 신경망 모델을 위한 파라미터 분석을 수행하였다. 또한, 초해상화 알고리즘을 2,500여 장의 반사 강도 영상에 적용하여 훈련과 검증을 하였다. 결과적으로 반사 강도 영상의 해상도를 향상시켰다. 바라건대 본 연구의 결과가 향후 자율 주행 분야에 적용되어 주행환경 인식과 장애물 탐지 성능 향상에 기여할 수 있기를 기대하는 바이다.
This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.