• Title/Summary/Keyword: Integrity Estimation

Search Result 143, Processing Time 0.026 seconds

Comparison of Dose Statistics of Intensity-Modulated Radiation Therapy Plan from Varian Eclipse Treatment Planning System with Novel Python-Based Indigenously Developed Software

  • Sougoumarane Dashnamoorthy;Karthick Rajamanickam;Ebenezar Jeyasingh;Vindhyavasini Prasad Pandey;Kathiresan Nachimuthu;Imtiaz Ahmed;Pitchaikannu Venkatraman
    • Progress in Medical Physics
    • /
    • v.33 no.3
    • /
    • pp.25-35
    • /
    • 2022
  • Purpose: Planning for radiotherapy relies on implicit estimation of the probability of tumor control and the probability of complications in adjacent normal tissues for a given dose distribution. Methods: The aim of this pilot study was to reconstruct dose-volume histograms (DVHs) from text files generated by the Eclipse treatment planning system developed by Varian Medical Systems and to verify the integrity and accuracy of the dose statistics. Results: We further compared dose statistics for intensity-modulated radiotherapy of the head and neck between the Eclipse software and software developed in-house. The dose statistics data obtained from the Python software were consistent, with deviations from the Eclipse treatment planning system found to be within acceptable limits. Conclusions: The in-house software was able to provide indices of hotness and coldness for treatment planning and store statistical data generated by the software in Oracle databases. We believe the findings of this pilot study may lead to more accurate evaluations in planning for radiotherapy.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Performance Prediction of Landing Gear Considering Uncertain Operating Parameters (운용 파라미터의 불확실성을 고려한 착륙장치 완충성능 해석)

  • Kim, Tae Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.921-927
    • /
    • 2013
  • The performance estimation of a landing gear with uncertain parameters is presented. In actual use, many parameters can have certain degrees of variations that affect the energy absorbing performance. For example, the shock strut gas pressure, oil volume, tire pressure, and temperature can deviate from their nominal values. The objective function in this study is the ground reaction during touchdown, which is a function of the abovementioned parameters and time. To consider the uncertain properties, convex modeling and interval analysis are used to calculatethe objective function. The numerical results show that the ground reaction characteristics are quite different from those of the deterministic method. The peak load, which affects the efficiency and structural integrity, is increases considerably when the uncertainties are considered. Therefore, it is important to consider the uncertainties, and the proposed methodology can serve as an efficient method to estimate the effect of such uncertainties.

A design approach of integral-abutment steel girder bridges for maintenance

  • Kim, WooSeok;Jeong, Yoseok;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2018
  • Integral abutment bridges (IABs) have no joint across the length of bridge and are therefore also known as jointless bridges. IABs have many advantages, such as structural integrity, efficiency, and stability. More importantly, IABs have proven to be have both low maintenance and construction costs. However, due to the restraints at both ends of the girder due to the absence of a gap (joint), special design considerations are required. For example, while replacing the deck slabs to extend the service life of the IAB, the buckling strength of the steel girder without a deck slab could be much smaller than the case with deck slab in place. With no deck slab, the addition of thermal expansion in the steel girders generates passive earth pressure from the abutment and if the applied axial force is greater than the buckling strength of the steel girders, buckling failure can occur. In this study, numerical simulations were performed to estimate the buckling strength of typical steel girders in IABs. The effects of girder length, the width of flange and thickness of flange, imperfection due to fabrication and construction errors on the buckling strengths of multiple and single girders in IABs are studied. The effect of girder spacing, span length ratio (for a three span girder) and self-weight effects on the buckling strength are also studied. For estimation of the reaction force of the abutment generated by the passive earth pressure of the soil, BA 42/96 (2003), PennDOT DM4 (2015) and the LTI proposed equations (2009) were used and the results obtained are compared with the buckling strength of the steel girders. Using the selected design equations and the results obtained from the numerical analysis, equations for preventing the buckling failure of steel girders during deck replacement for maintenance are presented.

Data Cleaning and Integration of Multi-year Dietary Survey in the Korea National Health and Nutrition Examination Survey (KNHANES) using Database Normalization Theory (데이터베이스 정규화 이론을 이용한 국민건강영양조사 중 다년도 식이조사 자료 정제 및 통합)

  • Kwon, Namji;Suh, Jihye;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.298-306
    • /
    • 2017
  • Objectives: Since 1998, the Korea National Health and Nutrition Examination Survey (KNHANES) has been conducted in order to investigate the health and nutritional status of Koreans. The food intake data of individuals in the KNHANES has also been utilized as source dataset for risk assessment of chemicals via food. To improve the reliability of intake estimation and prevent missing data for less-responded foods, the structure of integrated long-standing datasets is significant. However, it is difficult to merge multi-year survey datasets due to ineffective cleaning processes for handling extensive numbers of codes for each food item along with changes in dietary habits over time. Therefore, this study aims at 1) cleaning the process of abnormal data 2) generation of integrated long-standing raw data, and 3) contributing to the production of consistent dietary exposure factors. Methods: Codebooks, the guideline book, and raw intake data from KNHANES V and VI were used for analysis. The violation of the primary key constraint and the $1^{st}-3rd$ normal form in relational database theory were tested for the codebook and the structure of the raw data, respectively. Afterwards, the cleaning process was executed for the raw data by using these integrated codes. Results: Duplication of key records and abnormality in table structures were observed. However, after adjusting according to the suggested method above, the codes were corrected and integrated codes were newly created. Finally, we were able to clean the raw data provided by respondents to the KNHANES survey. Conclusion: The results of this study will contribute to the integration of the multi-year datasets and help improve the data production system by clarifying, testing, and verifying the primary key, integrity of the code, and primitive data structure according to the database normalization theory in the national health data.

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

Assessment of Riverine Health Condition and Estimation of Optimal Ecological Flowrate Considering Fish Habitat in downstream of Yongdam Dam (용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정)

  • Hur, Jun-Wook;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.481-491
    • /
    • 2009
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in the upper Geum river. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, richness and dominance indexes, bio-diversity (dominance index, diversity, evenness and richness), and index of biological integrity were assessed, and optimal ecological flowrates were estimated using the habitat suitability indexes established for three fish species Coreoleuciscus splendidus, Zacco platypus and Pseudopungtungia nigra selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two sensitive species of C. splendidus (22.4%) and Z. platypus (22.0%) dominated the fish community. The estimated IBI values ranged from 34 to 42 with average being 38 out of 50, rendering the site ecologically fair to good health conditions. An optimal ecological flowrate of 9.0 cms was recommended for the representative fish species at the site.

Damage Estimation of Structures by Second Order Modal Perturbation (2차 모우드 섭동법에 의한 구조물의 손상도 추정)

  • 홍규선;윤정방;류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.119-126
    • /
    • 1992
  • Most civil engineering structures such as bridges, power plants, and offshore platforms are apt to suffer structural damages over their service lives caused by adverse loadings, such as earthquakes, wind and wave forces. Accumulation of structural damages over a long period of time might cause catastrophic structural failure. Therefore, a methodology for monitoring the structural integrity is essential for assuring the safety of the existing structures. A method for the damage assessment of structures by the second order inverse modal perturbation technique is presented in this paper. Perturbation equation consists of a matrix equation involving matrices of structural changes(stiffness and mass matrix changes) and matrices of modal property changes(natural frequency and mode shape changes). The damages of a structure are represented as changes in the stiffness matrix. In this study, a second order perturbation equation is formulated for the damage assessment of structures, and solved by an iterative procedure. The effectiveness of the proposed method has been investigated through a series of example analysis. The estimated results for the structural damage indicated that the present method yields resonable estimates for the structural changes.

  • PDF

Estimation of Local Stress Change of Wall-Thinned Pipes due to Fluid Flow (유체유동에 의한 감육배관의 국부응력변화 평가)

  • Kim Young-Jin;Song Ki-Hun;Lee Sang-Min;Chang Yoon-Suk;Choi Jae-Boong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, a new evaluation scheme is suggested to estimate load-carrying capacities of wall thinned pipes. At first, computational fluid dynamics analyses employing steady-state and incompressible flow are carried out to determine pressure distributions in accordance with conveying fluid. Then, the variational pressures are applied as input condition of structural finite element analyses to calculate local stresses at the deepest point. The efficiency of proposed scheme was proven from comparison to conventional analyses results and it is recommended to consider the fluid structure interaction effect for exact integrity evaluation.

  • PDF