• Title/Summary/Keyword: Integrin alpha2

Search Result 79, Processing Time 0.027 seconds

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.

Pharmacological actions of morusinol on modulation of platelet functions via integrin αIIb/β3 signaling

  • Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.171-178
    • /
    • 2023
  • Morus alba, a popular medicinal plant belonging to the family Moraceae, has long been used commonly in traditional medicine and has various physiological activities, including antidiabetic, anti-microbial, diuretic, anti-oxidant, and anti-cancer activities. Morusinol was isolated from the root bark of M. alba; however, its biological effects have not yet been reported. Therefore, we examined the inhibitory effects of morusinol on human platelet aggregation, Ca2+ mobilization, and αIIb/β3 activity. Our data showed that collagen-induced human platelet aggregation was inhibited by morusinol without cytotoxicity. In this study, we examined whether morusinol inhibits platelet aggregation through the regulation of integrin αIIb/β3 and its associated signaling molecules. We observed that morusinol inhibited αIIb/β3 activation by regulating vasodilator-stimulated phosphoprotein, phosphatidylinositol-3 kinase, Akt (protein kinase B), and glycogen synthase kinase-3α/β. These results show that morusinol inhibited fibronectin adhesion, fibrinogen binding, and clot retraction. Taken together, morusinol shows strong antiplatelet and anti-clot retraction effects and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

  • Son, Young-Min;Jeong, Da-Hye;Park, Hwa-Jin;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.96-102
    • /
    • 2017
  • Background: Korean ginseng, Panax ginseng Meyer, has been used as a traditional oriental medicine to treat illness and promote health for several thousand years. Ginsenosides are the main constituents for the pharmacological effects of P. ginseng. Since several ginsenosides, including ginsenoside (G)-Rg3 and G-Rp1, have reported antiplatelet activity, here we investigate the ability of G-Rp4 to modulate adenosine diphosphate (ADP)-induced platelet aggregation. The ginsenoside Rp4, a similar chemical structure of G-Rp1, was prepared from G-Rg1 by chemical modification. Methods: To examine the effects of G-Rp4 on platelet activation, we performed several experiments, including antiplatelet ability, the modulation of intracellular calcium concentration, and P-selectin expression. In addition, we examined the activation of integrin ${\alpha}IIb{\beta}_3$ and the phosphorylation of signaling molecules using fibrinogen binding assay and immunoblotting in rat washed platelets. Results: G-Rp4 inhibited ADP-induced platelet aggregation in a dose-dependent manner. We found that G-Rp4 decreased calcium mobilization and P-selectin expression in ADP-activated platelets. Moreover, fibrinogen binding to integrin ${\alpha}IIb{\beta}_3$ by ADP was attenuated in G-Rp4-treated platelets. G-Rp4 significantly attenuated phosphorylation of extracellular signal-regulated protein kinases 1 and 2, p38, and c-Jun N-terminal kinase, as well as protein kinase B, phosphatidylinositol 3-kinase, and phospholipase C-${\gamma}$ phosphorylations. Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

In Vitro Isolation and Proliferation of Mouse Male Germ-Line Stem Cells (생쥐 생식줄기세포의 체외 분리 및 증식)

  • 김수경;김계성
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.243-248
    • /
    • 2003
  • Sperrnatogenesis, the process by which the male germ-line stem cells(GSCs; type A spermatogonia) divide and differentiate to produce the mature spermatozoa, occurs in the seminiferous tubules of the testis. The GSCs proliferate actively to produce two types of cells: other GSCs and differentiating spermatogonia. GSCs have unipotentcy, devoted solely to the generation of sperm. The function of GSCs has broad implications for development, disease, and evolution. Spermatogenesis is fundamental for propagation of species and the defects of this system can result in infertility or disease. The ability to identify, isolate, culture, and alter GSCs will allow powerful new approaches in animal transgenesis and human gene therapy relating to infertility. Until recently, research on stem cells in the testis has been limited because of technical difficulties in isolating and identifying these cell populations. Here, we were trying to find out optimal conditions for in vitro culture of GSCs for identifying and isolating GSCs. We collected mouse GSCs from 3-days old mouse by two-step enzyme digestion method. GSCs were plated and grown on mouse embryonic fibroblasts in Dulbecco's modified Eagle's medium (DMEM) containing 15% fatal bovine serum, 10 mM 2-mercaptoethanol, 1% non-essential amino acids, 1 ng/$m\ell$ bFGF, 10 $\mu$M forskolin, 1500 U/$m\ell$ human recombinant leukemia inhibitory factor (LIF). Over a period 3∼5 days, GSCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells. After 5th passages, cells within the colonies continued to be alkaline phosphatase and Oct-4 positive and tested positive against a panel of two immunological markers(Integrin $\alpha$ 6 and Integrin $\beta$ 1) that have been recognized generally to characterize GSCs. SSEA-1, SSEA-3, and SSEA-4 also showed positive signals. Based on our data, these GSCs-derived cultures meet the criteria for GSCs itself and even other pluripotent stem cells. We reported here the establishment of in vitro cultures from mouse male GSCs.

Type I Collagen-induced Pro-MMP-2 Activation is Differentially Regulated by H-Ras and N-Ras in Human Breast Epithelial Cells

  • Kim, In-Young;Jeong, Seo-Jin;Kim, Eun-Sook;Kim, Seung-Hee;Moon, A-Ree
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.825-831
    • /
    • 2007
  • Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin ${\alpha}2$, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.

Replicative Senescence of Periodontal Fibroblasts Induces the Changes in Gene Expression Pattern

  • Yi, Tac-Ghee;Jun, Ji-Hae;Min, Byung-Moo;Kim, Moon-Kyu;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Tooth loss in elderly is mainly caused by alveolar bone loss via severe periodontitis. Although the severity of periodontitis is known to be affected by age, the aging process or the genetic changes during the aging of periodontal tissue cells are not well characterized. In this study, we investigated the effect of in vitro aging on the change of gene expression pattern in periodontal fibroblasts. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDL) were obtained from two young patients and replicative senescence was induced by sequential subcultivation. When more than 90% cells were positively stained with senescence-associated ${\beta},-galactosidase$, those cells were regarded as aged cells. In aged GF and PDL, the level of phosphorylated retinoblastoma (RB) and $p16^{INK4A}$ protein was significantly decreased and increased, respectively. However, the protein level of p53 and p21, well known senescence-inducing genes, did not increase in aged GF and PDL. Although $p27^{Kip1}$ and $p15^{INK4B}$, another cyclin-dependent kinase inhibitors, were reported to be involved in replicative senescence of human cells, they were decreased in aged GF and PDL. Because senescent cells showed flattened and enlarged cell shape and are known to have increased focal adhesion, we examined the protein level of several integrins. Aged GF and PDL showed increased protein level of integrin ${\alpha}2$, ${\alpha}v$, and ${\beta}1$. When the gene expression profiles of actively proliferating young cells and aged cells were compared by cDNA microarray of 3,063 genes and were confirmed by reverse transcription-polymerase chain reaction, 7 genes and 15 genes were significantly and commonly increased and decreased, respectively, in aged GF and PDL. Among them, included are the genes that were known to be involved in the regulation of cell cycle, gene transcription, or integrin signaling. The change of gene expression pattern in GF and PDL was minimally similar to that of oral keratinocyte. These results suggest that $p16^{INK4A}/RB$ might be involved in replicative senescence of periodontal fibroblasts and the change of gene expression profile during aging process is cell type specific.

Fibronectin Induces Pro-MMP-2 Activation and Enhances Invasion in H-Ras-Transformed Human Breast Epithelial Cells

  • Kim, Jong-Sook;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.288-292
    • /
    • 2009
  • Interactions between tumor cells and the extracellular matrix (ECM) strongly influence tumor development, affecting cell survival, proliferation and migration. Fibronectin, a major component of ECM, has been shown to interact with integrins especially the ${\alpha}5{\beta}1$ integrin. Cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs) which are capable of digesting the different components of the ECM and basement membrane. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated, resulting the 62 kDa active MMP-2. In this study, we investigated the effect of fibronectin on activation of pro-MMP-2 and the cellular invasiveness in H-Ras-transformed MCF10A human breast epithelial cells. Here we show that fibronectin induces activation of pro-MMP-2 and up-regulation of MT1-MMP and TIMP-2 in H-Ras MCF10A cells. These results demonstrate that H-Ras MCF10A cells secrete high levels of active MMP-2 when cultured with fibronectin, suggesting a possible interaction between the ECM network and H-Ras MCF10A cells to generate active MMP-2 which is important for proteolysis and ECM remodeling. Invasive and migratory abilities of H-Ras MCF10A cells were enhanced by fibronectin. Fibronectin up-regulated the expression of ${\beta}1$ integrin which may play a role in cellular responses exerted by fibronectin. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, this study provides a mechanism for the cell surface-matrix degrading effect of fibronectin which will be crucial to breast cell invasion and migration.

Immunochemical study on the Role of ${\beta}_2$ Integrin in the Activation of Monocytes Upon Direct Contact with T Lymphocytes (T 세포 접촉에 의한 단핵구 활성화에서 ${\beta}_2$ Integrin의 역할에 관한 면역화학적 연구)

  • Lee, Suck-Cho;Lee, Ho;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • The modulation of leukocyte cell surface adhesion molecules may influence the development of cellular events that determine the course of the inflammatory process. Direct interaction between activated T cells and monocytes resulted in a large production of $IL-1{\beta}$ by monocytes. In this reactions, adhesion molecules play an important part, yet the role of them in Tmonocytes interaction remain unclear. This study was undertaken in an effort to elucidate, 1) the influence of 1.25(OH)$_2D_3-induced$ differentiation on the monocyte responsiveness to direct contact with T lymphocytes, and 2) the role of adhesion molecules on the T-monocyte direct interaction. Initially, I observed that direct contact of monocyte cell line THP-1 with stimulated fixed T cell line HuT78 markedly induces IL-1${\beta}$ production by THP-1. $IL-1{\beta}$ production was higher when THP-1 had been previously exposed to 1.25(OH)$_2D_3$ as compared to control, with ${\alpha}$- 1.25(OH)$_2D_3$ dose-dependent and exposure time-dependent manner. It was shown that 1.25(OH)$_2D_3$ also increased the expression of ${\beta}_2$ integrin adhesion receptor Mac-1(CD11b/CD18) dose- and timedependently, but did not increase the expression of human leukocyte antigen- D(HLA-D) and intercellular adhesion molecule-1(ICAM-1). The $IL-1{\beta}$ producing activity of THP-1 cells correlated well with the ability to induce the Mac-1 expression on THP-1 surface. Monoclonal antibody raised against relevant cell surface glycoproteins on THP-1 were tested for their ability to block the response of THP-1 to T cells. Antibody to Mac-1 only partially blocked $IL-1{\beta}$ production by THP-1, whereas antibodies to ICAM-1 and HLA-D did not. These data indicate that regulation of Mac-1 expression on THP-1 cells can alter the responsiveness of these cells to contact by activated T cells, however other unknown structures on the THP-1 cells may be involved in this process also.

  • PDF

Analysis of the Molecular Event of ICAM-1 Interaction with LFA-1 During Leukocyte Adhesion Using a Reconstituted Mammalian Cell Expression Model

  • Han, Weon-Cheol;Kim, Kwon-Seop;Park, Jae-Seung;Hwang, Sung-Yeoun;Moon, Hyung-Bae;Chung, Hun-Taeg;Jun, Chang-Duk
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • Ligand-receptor clustering event is the most important step in leukocyte adhesion and spreading on endothelial cells. Intercellular adhesion molecule-1 (ICAM-1) has been shown to enhance leukocyte adhesion, but the molecular event during the process of adhesion is unclear. To visualize the dynamics of ICAM-1 movement during adhesion, we have engineered stable Chinese hamster ovary cell lines expressing ICAM-1 fused to a green fluorescent protein (IC1_GFP/CHO) and examined them under the fluorescence microscopy. The transfection of IC1_GFP alone in these cells was sufficient to support the adhesion of K562 cells that express $\alpha$L$\beta$2 (LFA-1) integrin stimulated by CBR LFA-1/2 mAb. This phenomenon was mediated by ICAM-1-LFA-1 interactions, as an mAb that specifically inhibits ICAM-1-LFA-1 interaction (RRl/l) completely abolished the adhesion of LFA-1* cells to IC1_ GFP/CHO cells. We found that the characteristic of adhesion was followed almost immediately (~10 min) by the rapid accumulation of ICAM-1 on CHO cells at a tight interface between the two cells. Interestingly, ICI_GFP/CHO cells projected plasma membrane and encircled approximately half surface of LFA-1+ cells, as defined by confocal microscopy. This unusual phenomenon was also confirmed on HUVEC after adhesion of LFA-1* cells. Neither cytochalasin D nor 2,3-butanedione 2-monoxime an inhibitor of myosin light chain kinase blocked LFA-1-mediated ICAM-1 clustering, indicating that actin cytoskeleton and myosin-dependent contractility are not necessary for ICAM-1 clustering. Taken together, we suggest that leukocyte adhesion to endothelial cells induces specialized form of ICAM-1 clustering that is distinct from immunological synapse mediated by T cell interaction with antigen presenting cells.

  • PDF

Review of Vascular Endothelial Growth Factor (혈관내피성장인자에 관한 고찰)

  • Kim, Souk-Boum;Kim, Dong-Hyun;Song, Ju-Young;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.219-226
    • /
    • 2002
  • Vascular endothelial growth factors(VEGFs) constitute a group of structurally and functionally related growth factor that modulate many important physiological functions of endothelial cells, especially angiogenesis. This paper explain substance, which participate in signaling transduction of VEGF, including Bcl-2, caspase, focal adhesion kinase(FAK), integrin ${\alpha}v{\beta}3$, MAP kinase, nitric oxide(NO)and prostacyclin(PGI2). Physical therapy enhance angiogenesis for repairment of injury which as wound healing, muscle contusion, cerebrovascular disease, rheumatoid arthritis. Therefore this review assist understanding for mechanism of physical therapy as therapeutic angiogenesis.

  • PDF