• 제목/요약/키워드: Integrated single-stage power converter

검색결과 23건 처리시간 0.037초

태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터 (Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System)

  • 김경탁;전영태;박종후
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.

A New Single-Stage PFC AC/DC Converter

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.238-240
    • /
    • 2007
  • A new ZVZCS Single-Stage Power-Factor-Correction(PFC) AC/DC converter with boost PFC cell is integrated with voltage doubler rectified asymmetrical half-bridge(VDRAHB) is proposed in this paper. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of link capacitor. An 85W prototype was implemented to show that it meets the harmonic requirements and standards satisfactorily with nearly unity power factor and high efficiency over universal input.

  • PDF

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

단일 전력단 능동 클램프형 고주파 공전 인버터에 관한 연구 (A Study On Sing1e-Stage Active-Clamp Type High Frequency Resonant Inverter)

  • 강진욱;원재선;김동희;조규판;김경식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.287-291
    • /
    • 2002
  • This paper presents active-clamp class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated active-clamp class-E circuit to boost converter with the function of power factor correction. Boost converter is operated in positive and negative half cycle respectively at line frequency(60Hz), Such a operating in discontinuous conduction mode(DCM) of boost converter performs high power factor. By adding active-clamp circuit in class-E inverter, main switch of inverter part is operated not only ZVS(Zero Voltage Switch) but also reduced the switching voltage stress of main switch. This paper shows that simulation result using Psim 4.1 prove the validity of theoretical analysis. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가 (Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter)

  • 원재선;강진욱;김동희
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터 (Active-clamp Class-E High Frequency Resonant Inverter with Single-st)

  • 강진욱;원재선;김동희;노채균;심광열;이봉섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구 (A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter)

  • 원재선;박재욱;서철식;조규판;정도영;김동희
    • 조명전기설비학회논문지
    • /
    • 제20권2호
    • /
    • pp.16-23
    • /
    • 2006
  • 본 논문에서는 고역률을 가지고 영전압 스위칭으로 동작되는 새로운 단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터 회로에 관하여 기술하고 있다. 제안된 토폴로지는 역률 교정기로써 하프 브리지형 부스트 컨버터와 하프 브리지 고주파 공진 컨버터를 단일 전력단으로 일체화 시켰다. 역률 보상용 부스트 컨버터의 부스트 인덕터 전류를 가변 스위칭 주파수와 일정 듀티비를 가지고 불연속 전류 모드(DCM)로 동작시킴으로써 부가적인 입력 전류제어기 없이 높은 입력 역률을 얻을 수 있다. 또 제안한 토폴로지의 이론해석을 무차원화 파라미터를 도입하여 범용성 있게 하여 회로 설계 전단계에서 필요한 특성값을 도식적으로 표현하다. 첨가해, 제안한 토폴로지의 상용화 가능성과 이론해석의 정당성을 입증하기 위해 스위칭 소자로 Power-MOSFET IRF 740을 제안회로 토폴로지의 스위칭 소자로 채용해 실험 장치를 구성하여 검토를 행하였다. 제안된 컨버터는 향후 통신용 DC/DC 컨버터의 전원장치, 방전등용 진원장치 등의 전원시스템에 유용히 사용될 것으로 사료된다.

A Dual-Output Integrated LLC Resonant Controller and LED Driver IC with PLL-Based Automatic Duty Control

  • Kim, HongJin;Kim, SoYoung;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.886-894
    • /
    • 2012
  • This paper presents a secondary-side, dual-mode feedback LLC resonant controller IC with dynamic PWM dimming for LED backlight units. In order to reduce the cost, master and slave outputs can be generated simultaneously with a single LLC resonant core based on dual-mode feedback topologies. Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM) schemes are used for the master stage and slave stage, respectively. In order to guarantee the correct dual feedback operation, Phased-Locked Loop (PLL)-based automatic duty control circuit is proposed in this paper. The chip is fabricated using $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology, and the die size is $2.5mm{\times}2.5mm$. The frequency of the gate driver (GDA/GDB) in the clock generator ranges from 50 to 425 kHz. The current consumption of the LLC resonant controller IC is 40 mA for a 100 kHz operation frequency using a 15 V supply. The duty ratio of the slave stage can be controlled from 40% to 60% independent of the frequency of the master stage.

소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발 (Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System)

  • 홍경진
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.179-184
    • /
    • 2019
  • 전기가 부족한 개발도상국 같은 많은 나라에서는 Off Grid 형태의 소형풍력발전이 전력공급 문제를 해결하기 위한 효율적인 핵심 솔루션이다. 몇몇 국가에서는 전력계통의 확장과 전기가 부족한 지역의 감소로 소규모 풍력을 도시의 도로 조명, 모바일 통신 기지국, 양식업 및 해수 담수 등의 분야에 이용하기도 한다. 이런 변화에 따라 소형 풍력 산업 규모는 대규모 풍력보다 큰 잠재력이 기대되고 있다. 소형 풍력발전의 경우 발전기는 가변 속도로 제어되는 특성이 있으며 발전기에서 발생하는 전압 및 전류에는 많은 고조파 성분을 가지고 있다. 이를 해결하기 위해서 본 논문에서는 소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC 변환 통합장치를 제안하며 기존 AC to DC 컨버터는 단일 스위치를 갖는 3상 승압형 방식의 컨버터로서 인덕터 전류가 불연속모드로 제어되며, 입력전류의 고조파를 제거하여 단위역률을 갖는 특성을 갖는다. 제안된 컨버터는 입력단에 LCL 필터 및 3상 정류 승압형 컨버터, 계통연계를 위한 단상 풀브릿지 형태로 구성되어 있으며 에너지저장시스템(ESS) 기능이 부가된 제어 시스템으로 풍력발전을 이동 평준화 방식에 의해 급변하는 전력에 대해 계통 안정화를 추구할 수 있다.