• Title/Summary/Keyword: Integrated river basin management

Search Result 73, Processing Time 0.033 seconds

Assessment of Sediment Yield according to Observed Dataset

  • Lee, Sangeun;Kang, Sanghyeok
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1433-1444
    • /
    • 2016
  • South Korea is a maritime nation, surrounded by water on three sides; hence, it is important to preserve in a sustainable manner. Most areas, especially those bordering the East Sea, have been suffering from severe coastal erosion. Information on the sediment yield of a river basin is an important requirement for water resources development and management. In Korea, data on suspended sediment yield are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate the sediment yield for ungauged coastal basins by using a soil erosion model and a sediment delivery rate model in a geographic information system (GIS)-based platform. For applying the sediment yield model, a basin specific parameter was validated on the basis of field data, that, ranging from 0.6 to 1.2 for the 19 gauging stations. The calculated specific sediment yield ranged from 17 to $181t/km^2.yr$ in the various basin sizes of Korea. We obtained reasonable sediment yield values when comparing the measured data trends around the world with those in Korean basins.

Countermeasure and Mitigation to Flood Disaster in Japan (일본(日本)의 하천방재(河川防災) 대책(對策)에 대한 연구(研究))

  • Rim, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.117-127
    • /
    • 1992
  • Japan is situated in the zone attacked repeatedly by typhoon. She is apt to be given by the nature damage like flood and loss the life and the property conventionally because of her short channel and steep slope ground. This paper is centered on the method of analysis and the damage management of river which are based on the Bulletin of the Disaster Prevention Research Institute of Kyoto University. The field of flood disaster, submersion damage, water proof system, debris control disaster and water resources are studied respectely. The river management examples which are done by Foundation of River and Basin Integrated Communications and The Yodo River are analyzed. The above analysis helps to control disaster of river in Korea.

  • PDF

Application Strategies for IRWMS through internal and external water management systems analysis (국외 유역통합 물관리 시스템 분석을 통한 IRWMS 활용방안)

  • Kim, Eu-Gene;Oh, Chung-Whan;Kim, Nam-Il;Koh, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1678-1682
    • /
    • 2009
  • IRWMS(Integrated Real time Water Management System)은 우리나라의 수자원 운영환경에 부합하도록 하천유역에 수자원 통합관리 개념을 도입한 실시간 물관리 의사결정지원 시스템이다. 국내 기술로 개발하여 실무에 적용함으로써 수자원 이용 효율을 극대화하고 선진국 수준의 수자원 관리기술을 확보하기 위한 방안으로 개발되어졌다. 이러한 물관리 시스템 구축을 위해서는 통합 유역에 적합한 모형의 선택과 이수, 치수, 수질 관리 모델의 통합 방안, 해당 유역특성을 반영한 시스템 구성 방법, 각각의 모형의 입,출력 자료의 관리 및 실무에 적용하기 용이한 GUI 구성 등을 고려하여야 한다. 물관리 시스템은 GIS 기반의 해석모형과 웹기반의 정보, 지식 전달 시스템, 수문자료 관리를 위한 DB시스템 등으로 구성되어져 있으며 SOBEK, RIBASIM, MIKE BASIN, WEAP 등 다양한 물관리 시스템들은 각각의 개발 시기나 쓰임에 따라 해석모형과 DB의 사용유무 등 여러 기능들을 차별화하여 구성하고 있다. RIBASIM(RIver BAsin SIMulation)의 경우 다양한 해석모형 들을 각각의 과정에 따라 사용하고 있으며 CMT(Case Management tool), CAT(Case Analysis Tool)라 불리는 기능들을 통하여 각각의 과정을 순차적으로 진행하고 분석하고 있으며 자사의 수문DB관리 프로그램, 수질, GIS도구 등과 연동하여 사용되고 있다. MIKE BASIN의 경우 ArcGIS의 EXTENSION으로 강력한 GIS기능과 비쥬얼한 화면 구성을 그 특징으로 가지고 있다. IRWMS는 강우유출모형과 댐군 저수지 연계 운영모형, 수질모형으로 구성되어져 있으며 DB와의 연동을 통하여 실시간으로 의사결정자들이 의사결정을 지원하며 실무진 중심의 GUI구성을 통하여 실용성을 중심에 두었다. IRWMS는 금강, 낙동강의 구축사례에서 보듯이 실시간 운영으로 수자원 관리 실무진의 사용에 그 주안점을 두었지만 차후 범용화와 상기에서 언급한 여러 국내외 시스템들의 장점을 받아들인다면 각각의 유역특성에 맞는 다양한 활용으로 수자원기술의 선진화에 크게 기여를 할 것이다.

  • PDF

Water quality evaluation research through long-term water quality monitoring in Seohwa Stream Watershed (서화천유역 장기 수질모니터링을 통한 수질평가 연구)

  • Kal, Byungseok;Park, Jaebeom;Mun, Hyunsaing;Cho, Sohyun;Joo, Yongeun;Min, Kyeongok
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.256-267
    • /
    • 2022
  • This study analyzed the current status and trend of water quality using long-term water quality monitoring data measured over the past 5 years in the Seohwacheon Basin, located upstream of Daecheong Lake. In the Seohwacheon Basin, a project is underway to reduce the occurrence of algal blooms in the Daecheong Lake and to improve water quality, and continuous management is required for water quality management. The current water quality evaluation aims to identify the water quality management point, and the good water grade and the integrated water quality index (WQI) were used. For trend evaluation, the effect of the water quality improvement project was evaluated using the Mann-Kendall test and Sen's Slope. As a result of the evaluation, the current water quality index was used to identify the watersheds and when to manage water quality, and the effect of the improvement project was confirmed through trend analysis. Through this study, it is possible to review the water quality status and improvement effect using long-term water quality monitoring data, so it is expected to be applicable to similar types of watersheds in the future.

Application of K-WEAP (Korea-Integrated Water Resources Evaluation and Planning Model) (통합수자원평가계획모형 K-WEAP의 적용성 Application of K-WEAP)

  • Choi, Si-Jung;Lee, Dong-Ryul;Moon, Jang-Won;Kang, Seong-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.625-633
    • /
    • 2010
  • An integrated water resources management is highly required to use efficient water and preserve water quality due to the limits of water resources development and water pollution. K-WEAP was developed, which supports the water resources planning and evaluation within a fully integrated interactive system. In this study, we present three applications of K-WEAP. First, we examined the usefulness of K-WEAP as a water resources planning tool through its application to the National Water Resources Plan. Second, the conjunctive use of surface water and groundwater in the Geum river basin with K-WEAP was evaluated, and its results show how to support to set up a sustainable groundwater management plan. Finally, we confirmed the function of the integrated water quantity and quality management in K-WEAP, which conducted by comparing the simulated results of water quality in both QUAL2E and K-WEAP.

A Study on the Water Quality Improvement of Major Tributaries in Seoul, Applying Watershed Evaluation Techniques (총량관리 단위유역 평가기법을 활용한 서울특별시 주요 유입 지천의 수질개선효과에 관한 연구)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Im, Taehyo;Kim, Youngseok;Kim, Seongmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.32-46
    • /
    • 2021
  • South Korea has been divided into quantities and water quality, and due to a revision of the Government Organization law in June 2018, the controversial water management system was integrated into the Ministry of Environment. The total Maximum Daily Loads System has been called the flower of water quality control, and since 2004, all three major river systems which have been introduced into the Han River system, despite its various difficult environments, and subsequently leading to all of the four major rivers undergoing obligatory implementation since 2013. Currently, the target TMDL (Han River Phase 1 and Other Water Systems Phase 3) for the 2020 stage has been implemented. The domestic TMDL established a basic plan for calculating the load which complies with the unit watershed's target water quality, as well as an implementation plan for annual load management, both which have been institutionalized in order to evaluate load compliance on a repeated annual basis. Local governments ask external organizations to conduct investigations every year in order to assess the transition, which thereby requires tens of millions of won every year. Therefore, an assessment and management model that can be easily operated at the TMDL personnel level is required. In this study, when the Han river Water System TMDL was implemented in earnest, we confirmed the the water quality improvement effect when TMDL was introduced to major inflow tributaries (TancheonA, JungnangA, AnyangA) under the Seoul City's jurisdiction through the use of the total amount control unit basin evaluation technique. By presenting customized management measures, we propose the guidelines that are necessary for determining more effective water environmental policies.

Assessment of Future River Environment considering Climate Change and Basin Runoff Characteristics (기후변화와 유역유출특성을 고려한 미래하천환경 평가)

  • Ahn, Jung Min;Im, Toe Hyo;Lee, In Jung;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.269-283
    • /
    • 2014
  • This study evaluated the environmental impact based on watershed characteristics and climate change using RCP climate change scenarios provided by the Korea Meteorological Administration. Future dam inflow was estimated by the SWAT model. Dam safety evaluation and downstream duration curve analysis was performed using HEC-ResSim model. Trends of water quality was analyzed through seasonal-Kendall Test using existing water quality observation data. Release discharge and tributary runoff derived SWAT and HEC-ResSim models applied to Qual2E and the future change in water quality trends were analyzed. Integrated environmental review watershed following techniques will be able to obtain the river environment management system and environmental issues such as climate change, new guidelines for preemptively response will be provided.

Evaluation of hydropower dam water supply capacity (I): individual and integrated operation of hydropower dams in Bukhan river (발전용댐 이수능력 평가 연구(I): 북한강수계 개별 댐 및 댐군 용수공급능력 분석)

  • Jeong, Gimoon;Choi, Jeongwook;Kang, Doosun;Ahn, Jeonghwan;Kim, Taesoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.505-513
    • /
    • 2022
  • Recently, uncertainty in predicting available water resources is gradually increasing due to climate change and extreme weather conditions. Social interest in water management such as flood and drought prevention is also increasing, and after the unification of water management implemented in 2018, domestic water management is facing a major turning point. As part of such strengthening of water management capabilities, various studies are being conducted to utilize a hydropower dam for flood control and water supply purposes, which was mainly operated for hydroelectric power generation. However, since the dam evaluation methods developed based on a multi-purpose dam are being applied to hydropower dams, an additional evaluation approach that can consider the characteristics of hydropower dams is required. In this study, a new water supply capacity evaluation method is presented in consideration of the operational characteristics of hydropower dams in terms of water supply, and a connected reservoir simulation method is proposed to evaluate the comprehensive water supply capacity of a dam group operating in a river basin. The presented method was applied to the hydropower dams located in the Bukhan River basin, and the results of the water supply yield of individual dams and multi-reservoir systems were compared and analyzed. In the future, the role of hydropower dams for water supply during drought is expected to become more important, and this study can be used for sustainable domestic water management research using hydropower dams.

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.