• Title/Summary/Keyword: Integrated power system

Search Result 1,461, Processing Time 0.032 seconds

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost and Integrated Costs (발전비용의 부하역률 감도와 종합비용을 활용한 효과적인 역률개선 방안 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.284-286
    • /
    • 2003
  • The low load power factor causes various problems such as the Increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost and integrated costs are used for determining the locations and capacities of reactive power compensation devices effectively and for enhancing the load power factor appropriately. It is shown through the application to a small-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

Analysis of Development Trend for the Integrated Power System of Naval Vessels to Perform the High-Power and Energy Mission Load Platform (고출력 에너지 사용 체계 플랫폼 실현을 위한 해군함정의 통합 동력 시스템 발전 경향 분석)

  • Lee, Hyung-Min;Cho, Byung-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.796-801
    • /
    • 2011
  • The objective of this work presented here was focused on analysis of development trend for the integrated power system of naval vessels to perform the high-power and energy mission load platform. These mission loads are affected by the high level of military technologies, digitalization of the ocean battlefield, high power sensor system for maximization of the ship survivability. All electric power including propulsion power for ship should be controlled by integrated single system in order to carry various high power density weapon system such as Electromagnetic Aircraft Launch System, Electromagnetic Rail Gun[feasible precision striking at long distance 200NM(370km) or over]. As the analyzing the present state of things, mechanical propulsion system is shifted into hybrid or fully electric propulsion systems to realize integrated power system at the developed countries. Such challenges include reduced dependency on foreign-supplied fossil fuel, increasing demand for installed ship power, controlling life-cycle costs.

A Study on The Design of Network and Database Structure of The Integrated System for Power System Operational Planning and Analysis (전력수급계획 및 운용해석 종합시스템을 위한 네트워크 및 데이터베이스구조 설계에 관한 연구)

  • Ahn, Yang-Keun;Park, Si-Woo;Nam, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1009-1011
    • /
    • 1998
  • This paper presents a design of network and database structure of the integrated system for power system operational planning and analysis that will be more economical and stable of power system operation. An alias of this system is Highly Integrated Total Energy System(HITES). The Client/server model of HITES is designed as a remote data management model. The input/output-type of application programs and Oracle server is standardized. The separated user-databases from main-database strengthen security of HITES. It is plan to do that tables and relationships are defined by database designs. The connection of application program and DBMS of HITES will be tested through database design and data construction.

  • PDF

Implementation of Highly Integrated Total Energy System (전력수급 종합시스템 현장적용)

  • Park, Si-Woo;Yoon, Yong-Beum;Nam, Jae-Hyun;Choo, Jin-Boo;Choi, Bong-Soo;Lee, Hyo-Sang;Kim, Joon-Hwan;Lyu, Sung-Ho;Han, Seung-Goo;Baek, Woong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1525-1525
    • /
    • 1999
  • The main purpose of HITES(Highly Integrated Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The HITES can be utilized to supply a stable electric power and operate KEPCO's power system facilities economically. This system was put into operation in 1999. This paper describes the main feature of the HITES, main functions, numerical methods adopted in this system and network configuration.

  • PDF

Integrated Generation and Transmission Expansion Planning Using Generalized Bender’s Decomposition Method

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2228-2239
    • /
    • 2015
  • A novel integrated optimization method based on the Generalized Bender’s Decomposition (GBD) is proposed to combine both generation and transmission expansion problems. Most of existing researches on the integrated expansion planning based on the GBD theory incorporate DC power flow model to guarantee the convergence and improve the computation time. Inherently the GBD algorithm based on DC power flow model cannot consider variables and constraints related bus voltages and reactive power. In this paper, an integrated optimization method using the GBD algorithm based on a linearized AC power flow model is proposed to resolve aforementioned drawback. The proposed method has been successfully applied to Garver’s six-bus system and the IEEE 30-bus system which are frequently used power systems for transmission expansion planning studies.

A Study Integrated-Power-System Simulation Model of All-Electric-Ship (전기추진선박의 통합전력계통 시뮬레이션 모델에 관한 연구)

  • Ku, Hyun-Keun;Kwak, Ki-Kon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The simulation model of All-Electric-Ship consists of electrical and mechanical systems. Running the total simulation requires considerable time and causes a lack of computer memory, because the two systems have different dynamic characteristics. Therefore, integrated simulation is practically impossible. This paper proposes the simplified model of electrical system to reduce simulation time significantly, compared to the detailed model. The validity of the proposed simplified model is verified by comparing detailed and simplified simulation results. Thus, the simplified models are applied to the integrated system. As a result, total system simulation can be implemented.

The Plan to Improve Highly Integrated Total Energy System (전력수급 종합시스템 운용현황 및 개선방안)

  • Park, S.W.;Yoon, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.326-329
    • /
    • 2001
  • The main purpose of HITES(Highly Integrated Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The HITES can be utilized to supply a stable electric power and operate KEPCO's power system facilities economically. This system was put into operation in 1999. This paper describes the present condition for operation of HITES and proposes the plan to improve this system after installation.

  • PDF

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

A Study on Enhancing the Load Power Factor from the Point of View of Economic Operation Using the Load Power Factor Sensitivity Method (부하역률 감도기법 적용에 의한 전력시스템의 경제운용 측면에서의 역률개선 방안 연구)

  • Lee B. H.;Kim J. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.153-155
    • /
    • 2004
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the integrated costs are used for determining the value of the load power factor from the point of view of the economic operation. It is shown through the application to a large-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.