• Title/Summary/Keyword: Integrated kinetic

Search Result 61, Processing Time 0.027 seconds

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil (복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구)

  • Chung, Doug-Young;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

SHRINKAGE OF VITREOUS BODY CAUSED BY HYDROXYL RADICAL

  • Park, Myoung-Joo;Shimada, Takashi;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • In this study, we examined the effect of hydroxyl radical generated by $\gamma$-ray and UV irradiation on shrinkage of vitreous body. Change in gel ratio of vitreous body and change in the properties of its components (collagen, sodium hyaluronate) were analyzed. By comparing these results, the amount of hydroxyl radical, which induces the considerable shrinkage of vitreous body, was evaluated from theoretical calculation based on experimental condition and some reported kinetic parameters. It was concluded that the integrated amount of hydroxyl radical required to liquefy half of the vitreous body (Vitreous body gel ratio = 50%) was estimated as $140\;{\mu}molg^{-1}$ from $\gamma$-ray irradiation experiment. Also, from UV irradiation experiment result, it was confirmed that the effect of hydroxyl radical is larger than that of other reactive species. The causes of shrinkage of vitreous body are supposed as follows, 1) decrease in viscosity by cleavage of glycoside bond in sodium hyaluronate, 2) leaching of collagen from vitreous body and 3) leaching of crosslinked products and scission products of collagen.

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.

A Computerized Analysis of Kinetic Posture and Muscle Contraction during a Weight Lifting Motion (역도경기(力道競技)의 운동학적(運動學的) 자세(姿勢)와 근수축(筋收縮) 수준(水準)에 관(關)한 전산분석(電算分析))

  • Lee, Myeon-U;Jang, Won-Gyeong;Seong, Deok-Hyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-25
    • /
    • 1983
  • The purpose of this study was to film up computerized analyses for both kinematic posture(film analysis) and muscle dynamics (EMG) during a weight-lifting motion. (Snatch, Clean and Jerk) Using a motor drive camera (3.5 frames/sec) and a Location Analyzer, motion tracks of 13 landmarks, which were attached to the major joints, during the motion were converted into digital values. At the same time, EMG amplitudes from 11 major muscle groups were recorded. Recorded data were processed via analog/hybrid computer (ADAC 480) and digital computer (PDP 11/44). Landmark locations and EMG amplitude were integrated by a computerized routine. Computer output included graphic reproductions on sepuential dislocations of body segments, center of gravity of body segments and the associated changes on EMG amplitude such as % EMG's of major muscle group during a weight lifting motion. The results strongly suggest that the computerized motion-EMG integration can provide a further working knowledge in selection and in training of workers and athletes. Suggestions for a further study include additional device for velocity measurement, expansion of the link model for biomechanical analysis and other implementations necessary for athletic application.

  • PDF

Evaluation of Sewer Capacity using Kinetic Hydraulic Model (동력학적 수리해석모델 해석을 통한 하수관거능력 평가)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik;Lee, Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.

Estimation of Erosion Index Based on Impact Signal Analysis (충격 신호 분석에 기반한 침식 지수 개발)

  • Tenorio, Ricardo S.;Kwon, Byung Hyuk;Moraes, Macia C. da S.;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.543-552
    • /
    • 2020
  • This study is aimed at determining an algorithm capable of estimating the erosion index of rainfall for the region of Maceió-Alagoas in the northeast of Brazil. The sample of the truncated data from 2003 to 2006 counts 26,889 droplet size distributions integrated per minute, with 680 rain events with duration longer than 10 minutes. The equation proposed to estimate erosion index used as a dependent variable and independent variable, presenting a coefficient of determination of 99%. The statistical significance validated the relation between minimum rainfall intensity and erosion.

Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters

  • Kang, Hyesung;Ryu, Dongsu;Jones, T.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2017
  • According to structure formation simulations, weak shocks with typical Mach number, M<3, are expected to form in merging galaxy clusters. The presence of such shocks has been indicated by X-ray and radio observations of many merging clusters. In particular, diffuse radio sources known as radio relics could be explained by synchrotron-emitting electrons accelerated via diffusive shock acceleration (Fermi I) at quasi-perpendicular shocks. Here we also consider possible roles of stochastic acceleration (Fermi II) by compressive MHD turbulence downstream of the shock. Then we explore a puzzling discrepancy that for some radio relics, the shock Mach number inferred from the radio spectral index is substantially larger than that estimated from X-ray observations. This problem could be understood, if shock surfaces associated with radio relics consist of multiple shocks with different strengths. In that case, X-ray observations tend to pick up the part of shocks with lower Mach numbers and higher kinetic energy flux, while radio emissions come preferentially from the part of shocks with higher Mach numbers and higher cosmic ray (CR) production. We also show that the Fermi I reacceleration model with preexisting fossil electrons supplemented by Fermi II acceleration due to postshock turbulence could reproduce observed profiles of radio flux densities and integrated radio spectra of two giant radio relics. This study demonstrates the CR electrons can be accelerated at collisionless shocks in galaxy clusters just like supernova remnant shock in the interstellar medium and interplanetary shocks in the solar wind.

  • PDF

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.