• Title/Summary/Keyword: Integrated bridge system

Search Result 138, Processing Time 0.028 seconds

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Design and implementation of bridge operation terminal equipments and alarm systems for supporting nautical safety (선박 안전운항 지원을 위한 선교운용 단말장치 및 경보시스템 구현 및 설계)

  • Kim, Ok-Soo;Yoo, Byung-Jick;Lee, Myung-Won;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1423-1432
    • /
    • 2011
  • Since the marine accidents increase with the increased volume of traffic, preventive surveillance technology for safety navigation of the ships before the accident is being emphasized to secure the safety at sea along with post-accident measures. This paper aims to suggest a design based on an integrated safety management platform systems to support nautical safety, implements of bridge operation terminal equipments and alarm system for bridge watch monitoring and abnormal state of navigation/propulsion/machinery/power, and performs a quality evaluation for the actual boarding on the ship based on the classification standards.

유비쿼터스 환경의 지능형 시설물 모니터링 기술 개발

  • 남상관;이우식;구지희;우제윤;이종국
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.10a
    • /
    • pp.105-110
    • /
    • 2004
  • This study suggests a trial system for facility monitoring technology on ubiquitous environment. The trial system can be used for integrated various collection and sending data by bluetooth and wireless network from bridge. We used smart sensor and wireless network for it. Especially, we analyzed out all appliable technologies at monitoring part on ubiquitous environment and gave a standard spec to build the system. We wanted it as a guideline to apply ubiquitous in smart facility monitoring part.

  • PDF

Integrated Damage Identification System for large Structures via Vibration Measurement

  • JEONG-TAE KIM;SOO-YONG PARK;JAE-WOONG YUN;JONG-HOON BAEK
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2001
  • In this paper, an integrated damage identification system (IDIS) is proposed to locate and size damage in real structures. The application of the IDIS to real structures includes the measurement of modal responses, the construction of damage-detection models, and the implementation of measurements and models into the damage-detection process. Firstly, the theory of the damage identification method is outlined. Secondly, the schematic and each component of the IDIS are described. Finally, the practicality of the IDIS is verified from experiments on two different bridge-models, a model plate-grider and a model truss.

  • PDF

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

Development of a Finite Element Analysis Data model for Steel Box Girder Bridges Based on STEP Part 104 (STEP Part 104를 기반으로한 강상자형 교량의 유한요소해석 데이터모델 개발)

  • 이상호;송정훈;정연석;이영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.193-200
    • /
    • 2001
  • In this study, the methodology to develop a data model for steel box girder bridge based on STEP part 104 is presented. The concept of STEP and the schema of part 104 are briefly reviewed, and then the procedure of data model standardization is described. A new data model for steel box girder bridge is developed by incorporating with not only the geometric and topological representation schema of the part 42 but also the representation structure information of the part 43 and the detailed finite element analysis information of the part 104. The prototype of integrated finite element analysis(FEA) system by interfacing STEP physical file is also presented. The applicability of developed data model for FEA is verified by preprocessor system of FEA.

  • PDF

Development of the Controller for TFM with Contol-Rod (제어봉 구동장치용 횡자속형 전동기의 제어기 개발)

  • Kim J.M.;Jeong Y.H;Kang D.H.;Im T.Y.;Kim D.H.;Lee S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.284-287
    • /
    • 2001
  • In the System-integrated modular advanced reactor(SMART), the motor for Control element drive mechanism(CEDM) requires high density power and simple drive mechanism to reduce volume because of restriction by install-space and must satisfy the reactor operating circumstances with high pressure and temperature. To Maximize the characteristics of the TFM, we chose the asymmetric bridge converter as the driving system for TFM. Because two switching devices are connected in series with the stator winding of each phases in the asymmetric bridge converter all the phases are not affected by another phase but controlled independently. Also, this converter has many advantages that the various control methods can be adopted, it is easy to control, and that in case that the switching devices of a phase are damaged, the affects can be minimized.

  • PDF

Realization on the Integrated System of Navigation Communication and Fish Finder for Safety Operation of Fishing Vessel (어선의 안전조업을 위한 항해통신 및 어탐기의 통합시스템 구현)

  • In-suk Kang;In-ung Ju;Jeong-yeon Kim;Jo-cheon Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.433-440
    • /
    • 2021
  • The problem of maritime accidents due to the carelessness of fishing vessels, which is affected by the aging of fishing vessel operators. And there is navigation, communication and fish finder that is installed inside the narrow bridge of a fishing vessel. Therefore these system are monitors as many as of each terminal, which is bad influence on obscuring view of front sea from a fishing vessel bridge. In addition a large problem, it is occurs to reduce of the information recognition ability due to the confusion, which is can not check the display information each of screen equipments. Therefore, there has been demand to simply integrated the equipment, and it has wanted the integrated support system of these equipment. The display must be provided on a fishing vessels such as electronic charts, communications equipments and fish detection into one case. In this paper, the integrated system will be installed the GPS plotter, AIS, VHF-DSC, V-pass, fish finder and power supply in the narrow wheelhouse on a fishing vessel, which is configured in one case and operated by multi function display (MFD). The MFD is integrated to simplify for several multi terminals and provided necessary information on a single screen. This integration fishery support system will has improved in sea safety operation and fishery environment of fishing vessels by this implementation.

Network vision of disaster prevention management for seashore reclaimed u-City (해안매립 신도시의 재해 예방관리 네트워크 비젼)

  • Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.117-129
    • /
    • 2009
  • This paper studied the safety management network system of infrastructure which constructed smart sensors, closed-circuit television(CCTV) and monitoring system. This safety management of infrastructure applied to bridge, cut slop and tunnel, embankment etc. The system applied to technologies of standardization guidelines, data acquirement technologies, data analysis and judgment technologies, system integration setup technology, and IT technologies. It was constructed safety management network system of various infrastructure to improve efficient management and operation for many infrastructure. Integrated safety management network system of infrastructure consisted of the real-time structural health monitoring system of each infrastructure, integrated control center, measured data transmission using i of tet web-based, collecting data using sf ver, early alarm system which the dangerous event of infrastructure occurred. Integrated control center consisted of conference room, control room to manage and analysis the data, server room to present the measured data and to collect the raw data. Early alarm system proposed realization of warning and response within 5 minute or less through development of sensor-based progress report and propagation automation system using the media such as MMS, VMS, EMS, FMS, SMS and web services of report and propagation. Based on this, the most effective u-Infrastructure Safety Management System is expected to be stably established at a less cost, thus making people's life more comfortable. Information obtained from such systems could be useful for maintenance or structural safety evaluation of existing structures, rapid evaluation of conditions of damaged structures after an earthquake, estimation of residual life of structures, repair and retrofitting of structures, maintenance, management or rehabilitation of historical structures.

  • PDF

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.