• Title/Summary/Keyword: Integrated Steam Reformer

Search Result 14, Processing Time 0.018 seconds

Operating Characteristics of $1Nm^3/hr$ class Natural Gas Fuel Processor for Residential Fuel cells (가정용 연료전지 $1Nm^3/hr$급 천연가스 연료처리장치의 운전 특성)

  • Shin, Jang-Sik;Shin, Seock-Jae;Lee, Seung-Young;Yang, Hye-Kyong;Sung, Bong-Hyun;Kim, Doo-Hoon;Park, Jong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.19-22
    • /
    • 2007
  • In this study, we investigated operating characteristics of natural gas fuel processor for polymer electrolyte membrane fuel cells (PEMFCs). The fuel processor consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume is exactly(exceptionally) small, namely, about 10L except outer insulation. The producted hydrogen is $1Nm^3/hr$ and the maximum thermal efficiency is ${\sim}76%$(low heating value) at full operating load. A compact and highly efficient $1Nm^3/hr$ class natural gas fuel processor was developed at UNISON is an advantage for application in residential PEMFCs co-generation systems.

  • PDF

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

High Purity Hydrogen Generator for Fuel Cell Vehicles (연료전지 자동차 탑재형 고순도 수소생산장치)

  • Han, Jaesung;Lee, Seok-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2001
  • We developed a compact, 10 kWe, purifier-integrated reformer which supplies hydrogen for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by palladium alloy membrane and catalytic combustion by noble metal coated wire-mesh catalyst were combined with the conventional methanol steam reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems. In this system, steam reforming, hydrogen purification, and catalytic combustion take place all in a single reactor so that the whole system is compact and easy to operate. The module produces $8.2Nm^3/hr$ of 99.999% or higher purity hydrogen with CO impurity less than 10 ppm, which is equivalent to 10 kWe when PEMFC has 45 % efficiency. Thermal efficiency of the module is 81 % and the power density of the module is 1.6 L/kWe. As the results of experiments, cold-start time has been measured about 20 minutes. Response time of hydrogen production to the change of the feed rate has been within 1 minutes.

  • PDF