• Title/Summary/Keyword: Integrated Risk-Informed Safety

Search Result 12, Processing Time 0.016 seconds

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

A Study on the Significance of Unit Capacity Factor (Utilization Rate) of Nuclear Power Plants and Measures for Increasing (원전 이용률의 의의 및 증진방안 고찰)

  • Don Kug Lee;Chi Bum Bahn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2022
  • Unit capacity factor (utilization rate) of nuclear power plants (NPPs) is an important performance indicator. Since the first commercial operation of Kori Unit 1 began in April 1978, the utilization rate of domestic NPPs has gradually increased, reaching 90% from the end of the 1990s. However, due to various issues such as the Fukushima accident in 2011, corrosion of the CLP, the utilization rate dropped to 65~80%. In the early 1980s, the utilization rate of the U.S. NPPs was around 60%. However, since 2004, it has been consistently maintained above 90%. Therefore, in this study, we first examined the causes of declining the utilization rate in domestic NPPs. Next, the significances of the utilization rates are reviewed in five aspects: investment capability, electricity rate, safety and export, etc., with discussion on the current status of the utilization rates in the U.S. Based on this, three key factors are derived as the reasons of the increasing: equipment reliability program, on-line maintenance and the pursuit of institutional rationality. And finally, by synthesizing above results, the measures for increasing the utilization rate of domestic NPPs are proposed in terms of equipment management, institutional improvements, and personnel resources.