• Title/Summary/Keyword: Integrated Probabilistic Data Association Filter(IPDAF)

Search Result 3, Processing Time 0.02 seconds

Performance analysis of automatic target tracking algorithms based on analysis of sea trial data in diver detection sonar (수영자 탐지 소나에서의 해상실험 데이터 분석 기반 자동 표적 추적 알고리즘 성능 분석)

  • Lee, Hae-Ho;Kwon, Sung-Chur;Oh, Won-Tcheon;Shin, Kee-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.415-426
    • /
    • 2019
  • In this paper, we discussed automatic target tracking algorithms for diver detection sonar that observes penetration forces of coastal military installations and major infrastructures. First of all, we analyzed sea trial data in diver detection sonar and composed automatic target tracking algorithms based on track existence probability as track quality measure in clutter environment. In particular, these are presented track management algorithms which include track initiation, confirmation, termination, merging and target tracking algorithms which include single target tracking IPDAF (Integrated Probabilistic Data Association Filter) and multitarget tracking LMIPDAF (Linear Multi-target Integrated Probabilistic Data Association Filter). And we analyzed performances of automatic target tracking algorithms using sea trial data and monte carlo simulation data.

Multiple Vehicle Tracking in Urban Environment using Integrated Probabilistic Data Association Filter with Single Laser Scanner (단일 레이저 스캐너와 Integrated Probabilistic Data Association Filter를 이용한 도심환경에서의 다중 차량추적)

  • Kim, Dongchul;Han, Jaehyun;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.33-42
    • /
    • 2013
  • This paper describes a multiple vehicle tracking algorithm using an integrated probabilistic data association filter (IPDAF) in urban environments. The algorithm consists of two parts; a pre-processing stage and an IPDA tracker. In the pre-processing stage, measurements are generated by a feature extraction method that manipulates raw data into predefined geometric features of vehicles as lines and boxes. After that, the measurements are divided into two different objects, dynamic and static objects, by using information of ego-vehicle motion. The IPDA tracker estimates not only states of tracks but also existence probability recursively. The existence probability greatly assists reliable initiation and termination of track in cluttered environment. The algorithm was validated by using experimental data which is collected in urban environment by using single laser scanner.

Research on improvement of target tracking performance of LM-IPDAF through improvement of clutter density estimation method (클러터밀도 추정 방법 개선을 통한 LM-IPDAF의 표적 추적 성능 향상 연구)

  • Yoo, In-Je;Park, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.99-110
    • /
    • 2017
  • Improving tracking performance by estimating the status of multiple targets using radar is important. In a clutter environment, a joint event occurs between the track and measurement in multiple target tracking using a tracking filter. As the number increases, the joint event increases exponentially. The problem to be considered when multiple target tracking filter design in such environments is that first, the tracking filter minimizes the rate of false track alarmsby eliminating the false track and quickly confirming the target track. The purpose is to increase the FTD performance. The second consideration is to improve the track maintenance performance by allocating each measurement to a track efficiently when an event occurs. Through two considerations, a single target tracking data association technique is extended to a multiple target tracking filter, and representative algorithms are JIPDAF and LM-IPDAF. In this study, a probabilistic evaluation of many hypotheses in the assignment of measurements was not performed, so that the computation amount does not increase nonlinearly according to the number of measurements and tracks, and the track existence probability based on the track density The LM-IPDAF algorithm was introduced. This paper also proposes a method to reduce the computational complexity by improving the clutter density estimation method for calculating the track existence probability of LM-IPDAF. The performance was verified by a comparison with the existing algorithm through simulation. As a result, it was possible to reduce the simulation processing time by approximately 20% while achieving equivalent performance on the position RMSE and Confirmed True Track.