• Title/Summary/Keyword: Integrated Navigation Algorithm

Search Result 121, Processing Time 0.024 seconds

Trade-off Study on the Performance of GPS/INS for Aviation Navigation

  • Changsun Yoo;leeki Ahn;Lee, Sangjeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47.2-47
    • /
    • 2002
  • $\textbullet$ Introduction of aviation navigation $\textbullet$ Integrated navigation algorithm $\textbullet$ Description of hardware system $\textbullet$ Ground test $\textbullet$ Flight test $\textbullet$ Conclusion

  • PDF

Smoothing and Prediction of Measurement in INS/GPS Integrated Kalman Filter (INS/GPS 결합 칼만필터의 측정치 스무딩 및 예측)

  • Lee, Tae-Gyu;Kim, Gwang-Jin;Je, Chang-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.944-952
    • /
    • 2001
  • Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it is desired to combine INS with external aids such as GPS. However GPS informations have a randomly abrupt jump due to a sudden corruption of the received satellite signals and environment, and moreover GPS can\`t provide navigation solutions. In this paper, smoothing and prediction schemes are proposed for GPS`s jump or unavailable GPS. The smoothing algorithm which is designed as a scalar adaptive filter, smooths abrupt jump. The prediction algorithm which is proved by Schuler error model of INS, estimates INS error in appropriate time. The outputs of proposed algorithm apply stable measurements to GPS aided INS Kalman filter. Simulations show that the proposed algorithm can effectively remove measurement jump and predict INS error.

  • PDF

Modified UKF Considering Real-Time Implementation of the Multi-Rate INS/GPS Integrated Navigation System (다중속도 INS/GPS 결합항법시스템의 실시간 구현을 고려한 수정된 UKF)

  • Cho, Seong Yun;Enkhtur, Munkhzul;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • UKF (Unscented Kalman Filter) has been used in the nonlinear systems without initial accurate state estimates instead of EKF (Extended Kalman Filter) of the last decade because the UKF has robustness to the large initial estimation error. In the multirate integrated system such as INS (Inertial Navigation System)/GPS (Global Positioning System) integrated navigation system, however, it is difficult to implement the UKF based navigation algorithm in the mid-grade micro-processor due to the large computational burden. To overcome this problem, this paper proposes a MUKF (Modified UKF) that has a reduced computation burden using the basic idea that the change of the provability distribution for the state variables between measurement updates is small in the multi-rate INS/GPS integrated navigation filter. The performance of the proposed MUKF is verified by numerical simulations.

GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments (GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘)

  • Kim, Jiyeon;Song, Moogeun;Kim, Jaehoon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

Integration Algorithm of GPS/SDINS/ST for a Space Navigation (우주항법을 위한 GPS/SDINS/ST 결합 알고리듬)

  • Yi, Chang-Yong;Cho, Kyeum-Rae;Lee, Dae-Woo;Cho, Yun-Cheol
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A GPS/SDINS/ST(Star Tracker) integrated sensor algorithm is more robust than the GPS/SDINS and the ST/SDINS systems on exploration of other planets. Most of the advanced studies shown that GPS/SDINS/ST integrated sensor with centralized Kalman filter was more accurate than those 2 integrated systems. The system, however, consist of a single filter, it is vulnerable to defects on failed data. To improve the problem, we work out a study using federated Kalman filter(No-Reset mode) and centralized Kalman filter with adaptive measurement fusion which known as robustness on fault. The simulation results show that the debasing influences are reduced and the computation is enable at least 100Hz. Further researches that the initial calibration in accordance with observability and applying the exploration trajectory are needed.

Performance Analysis of MUSIC-Based Jammer DOA Estimation Technique for a Misaligned Antenna Array

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • As a countermeasure against the threat of jamming which can disrupt operation of the Global Positioning System (GPS) receivers, various kinds of technique to estimate the Direction-Of-Arrivals (DOAs) of incoming jamming signals have been widely studied, and among them, the MUltiple SIgnal Classification (MUSIC) algorithm is known to provide very high resolution. However, since the previous studies regarding the MUSIC algorithm does not consider the orientation of each antenna element of antenna arrays, there is a possibility that DOA estimation performance degrades in the case of a misaligned antenna array whose antenna elements are not oriented along the same direction. As an effort to solve this problem, there exists a previous work which presents an MUSIC-based method for DOA estimation. However, the error between the real and measured values of each antenna orientation is not taken into consideration. Therefore, in this paper, the effect of the aforementioned error on the DOA estimation performance in the case of a misaligned antenna array is analyzed by simulations.

Integrated Navigation Algorithm using Velocity Incremental Vector Approach with ORB-SLAM and Inertial Measurement (속도증분벡터를 활용한 ORB-SLAM 및 관성항법 결합 알고리즘 연구)

  • Kim, Yeonjo;Son, Hyunjin;Lee, Young Jae;Sung, Sangkyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.189-198
    • /
    • 2019
  • In recent years, visual-inertial odometry(VIO) algorithms have been extensively studied for the indoor/urban environments because it is more robust to dynamic scenes and environment changes. In this paper, we propose loosely coupled(LC) VIO algorithm that utilizes the velocity vectors from both visual odometry(VO) and inertial measurement unit(IMU) as a filter measurement of Extended Kalman filter. Our approach improves the estimation performance of a filter without adding extra sensors while maintaining simple integration framework, which treats VO as a black box. For the VO algorithm, we employed a fundamental part of the ORB-SLAM, which uses ORB features. We performed an outdoor experiment using an RGB-D camera to evaluate the accuracy of the presented algorithm. Also, we evaluated our algorithm with the public dataset to compare with other visual navigation systems.

Flight Test of GPS/INS Navigation System for Air Navigation (공중항법을 위한 GPS/INS 비행시험)

  • Yoo, C.S.;Ahn, I.K.;Lim, C.H.;Lee, S.J.;Ahn, I.K.;Nam, G.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.10 no.1
    • /
    • pp.35-44
    • /
    • 2002
  • Inertial Navigation System(INS) has been used in the field of air navigation for a long time but is not popular in general aviation due to high price. Recently low-price GPS is available but vulnerable to radio interference. As an alternative on these problems, GPS/INS integrated navigation system has been considered. GPS/INS is capable of implementing navigation with low-price inertial sensors but its accuracy is dependent upon how much drift of INS may be calibrated by using GPS. In order to apply GPS/INS to air navigation, it must be investigated how long drift of INS in case of no GPS aiding will be bounded within requirements for safe flight. From the above motivation, the flight test for GPS/INS navigation system was conducted in order to make sense its performance in air navigation and its result was shown.

  • PDF

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers (두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬)

  • LEE PAN-MOOK;JUN BONG-HUAN;HONG SEOK-WON;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.